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Neuberg’s Theorem 
25 September 2022 

Jim Stevenson 

This turned out to be a challenging puzzle from the 

1980 Canadian Math Society’s magazine, Crux 

Mathematicorum ([1]).   

Proposed by Leon Bankoff, Los Angeles, California. 

Professor Euclide Paracelso Bombasto Umbugio has 

once again retired to his tour d’ivoire where he is now 

delving into the supersophisticated intricacies of the 

works of Grassmann, as elucidated by Forder’s Calculus 

of Extension. His goal is to prove Neuberg’s Theorem: 

If D, E, F are the centers of squares described 

externally on the sides of a triangle ABC, then the 

midpoints of these sides are the centers of squares 

described internally on the sides of triangle DEF.  [The 

accompanying diagram shows only one internally 

described square.] 

Help the dedicated professor emerge from his self-

imposed confinement and enjoy the thrill of 

hyperventilation by showing how to solve his problem using only highschool, synthetic, Euclidean, 

“plain” geometry. 

Alas, my plane geometry capability was inadequate to solve the puzzle that way, so I had to resort 

to the sledge hammer of analytic geometry, trigonometry, and complex variables. 

My Solution 

Figure 1 shows the case for the internally 

described square on one of the sides of the 

triangle DEF.  The other sides are handled 

equivalently.  It suffices to show the red triangle 

with vertex at the midpoint of side AB of the 

original triangle ABC and hypotenuse DE is an 

isosceles right triangle.  We can then rotate the 

red triangle 3 times to fill the internally described 

square, showing that the center of the square is 

the midpoint of side AB. 

The angles and sides of the original triangle 

ABC are labeled as shown in Figure 1 with the 

origin of the coordinate system at the midpoint.  

The complex numbers z1 and z2 represent the 

vectors OD and OE.  We wish to show they are 

perpendicular to each other and of the same 

length.  (I was reminded of the complex variable approach by the similarities of this problem to 

Bottema’s Theorem.) 

 
 

 
Figure 1 
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My first approach involved an enormous amount of computation.  I wanted to show 

perpendicularity via the Pythagorean Theorem, that is, |z1|
2
 + |z2|

2
 = |z2 – z1|

2
.  For complex numbers 

this involves complex conjugates: 
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So  |z1|
2
 + |z2|

2
 = |z2 – z1|

2
 if and only if 0)Re( 21 =zz .  To show z1 and z2 have the same length, I 

would have to show 
2211 zzzz = .  So three complicated products in all. 

I managed to show 0)Re( 21 =zz  after a lot of trial and error.  But then I thought of a simpler way 

to get the answer in one equation without involving products, namely, show  

 z1 = iz2. (1) 

Recall that multiplication by 2
πi

ei = is just counter-clockwise rotation by π/2 = 90°. 
 

From Figure 1 we have,  since e
iπ = –1, 
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It certainly does not look like equations (2) and (3) satisfy equation (1).  This is where we have to 

involve trigonometry.  We are going to need some trigonometric relations from Figure 1, as well as 

some trigonometric properties:  

 c = a cos α + b cos β  (4) 

 a sin α = b sin  β. (5) 
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 cos (π – θ) = –cos θ (8) 

Now, using equations (4) – (8), 
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and so equation (1), z1 = iz2, is true. 

This was a nightmare of minus signs, which included such things as (i)(–i) = – (–1) = 1 and 

expressions that differed only by minus signs.  It took a while to get it right. 

Crux Mathematicorum Solution 

The solution is depressingly simple—again, once you see it. Shades of a coffin problem. 

Solution by J.T. Groenman, Arnhem, The Netherlands. 

It suffices to show that, say, the midpoint M of BC is the center of the square on EF or, 

equivalently, that ME = MF and ME ⊥ MF (see Figure 2) . 

 
Figure 2  [Augmented from the original] 

A 90° rotation about A takes triangle PAB into triangle CAQ, so  

PB = CQ and PB ⊥ CQ. 

Now ME = MF follows from 

ME = ½ BP = ½ CQ = MF 

[via similar triangles scaled by 2] and ME ⊥ MF follows from 

ME || BP ⊥ CQ || MF. 

Also solved by JOHN T. BARSBY, St. John’s-Ravenscourt School, Winnipeg, Manitoba; W.J. 

BLUNDON, Memorial University of Newfoundland; CLAYTON W, DODGE, University of Maine 

at Orono; HOWARD EVES, University of Maine; JACK GARFUNKEL, Flushing, N.Y.; ANDY 

LIU, University of Alberta; LAI LANE LUEY, Willowdale, Ontario; LEROY F. MEYERS, The 

Ohio State University; NGO TAN, student, J.F. Kennedy H.S., Bronx, N.Y.; KESIRAJU 

SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India; DAN SOKOLOWSKY, Antioch 

College, Yellow Springs, Ohio; ROBERT TRANQUILLE, College de Maisonneuve, Montreal, 

Quebec; JAN VAN DE CRAATS, Leiden University, The Netherlands; and the proposer. 
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Editor’s comment. 

This theorem is credited to Neuberg by Forder,
1
 who gives a two-line solution, using the method 

and notation of Grassmann, which so far has thoroughly defeated (and 

deflated) Professor Umbugio, the premier mathematician at the University of 

Guayazuela, despite frequent invocations to his patron saint and namesake 

Euclide.
2
 

In an effort to help the good professor, most of our solvers submitted 

solutions (some quite lengthy) in “plain” geometry. Dodge and van de Craats 

gave proofs by transformation geometry and expressed the hope that such 

proofs would soon be considered “plain” geometry even by Professor 

Umbugio. In view of the parlous state of geometry in Guayazuela (and North 

America—we don’t know about the rest of the world), that time is not yet. 

Garfunkel gave a proof by complex numbers, which could only be considered 

“plain” geometry in an imaginary high school.  

There is only one statement in our featured solution which is likely to 

cause Professor Umbugio some concern: that PB ⊥ CQ results from a 90° 

rotation about A. Figure 3 is all that is needed to bring that statement into the 

realm of “plain” geometry. 

Ah, the genius of adding the lines PB and CQ.  They were the key. 
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Figure 3 


