Broken Diagonal Problem

26 October 2022

Jim Stevenson

This is a nice problem from the UKMT Senior Mathematics Challenge for 2022 ([1]):

Five line segments of length 2, 2, 2, 1 and 3 connect two corners of a square as shown in the diagram. What is the shaded area?
A 8
B 9
C 10
D 11
E 12

The pleasure of solving this problem may be lessened if one is under a time crunch, as is the case with all these timed tests.

My Solution

I decided to superimpose a 1×1 grid on the figure to help reveal the relationships (Figure 1). I then added a red line to divide the square into halves. The desired shaded region and a yellow region, that can be seen to be $31 / 2$ square units, make up one half of the square.

A green diagonal line is drawn to again divide the square into two halves. We see from the figure and the Pythagorean Theorem that

$$
2 s^{2}=d^{2}=1^{2}+7^{2}=50
$$

So $\quad s^{2}=25$.
Then the shaded area is

$$
1 / 2 \mathrm{~s}^{2}-31 / 2=12^{1 / 2}-31 / 2=9(\text { Answer B) }
$$

UKMT Solution

Answer B

By identifying similar right-angled triangles, we can first calculate the side-length of the large square. Drawing an extra line $R U$ to complete rectangle $R T S U$ gives $S R=1$ and $R V=5$. A straight line from O to V passes through $S P$ at Q. Let $P Q=x$ and therefore $Q R=1-x$. As $\angle O Q P$ and $\angle V Q R$ are vertically opposite, they are equal, so triangle $O Q P$ and triangle $V Q R$ are similar. Therefore $x / 2=(1-x) / 5$ which rearranges to give $x=$ $2 / 7$. The ratio $P Q: Q R=2: 5$ and so the ratio $O Q: Q V=2: 5$. This gives $O V=7 / 2 \times O Q$. Using Pythagoras' Theorem,

$$
O V=\frac{7}{2} \sqrt{2^{2}+\left(\frac{2}{7}\right)^{2}}=5 \sqrt{2}
$$

Figure 2

So $O W=V W=5$. The shaded area is then
area of triangle $V N O$ - area of rectangle $R S T U$ - area of triangle $V R Q+$ area of triangle $O P Q$

$$
\begin{aligned}
& =(1 / 2 \times 5 \times 5)-(1 \times 2)-(1 / 2 \times(2+3) \times 5 / 7)+(1 / 2 \times 2 \times 2 / 7) \\
& =9 .
\end{aligned}
$$

References

[1] "Senior Mathematics Challenge Problem 25", United Kingdom Mathematics Trust, 4 October 2022. (https://www.ukmt.org.uk/sites/default/files/ukmt/SMC\ 2022\ Paper.pdf)
© 2022 James Stevenson

