A Nice Factorial Sum

18 October 2021

Jim Stevenson

clipart-library.com

This is another infinite series from Presh Talwalkar, ${ }^{1}$ but with a twist.

This problem is adapted from one given in an annual national math competition exam in France. Evaluate the infinite series:

$$
1 / 2!+2 / 3!+3 / 4!+\ldots
$$

The twist is that Talwalkar provides three solutions, illustrating three different techniques that I in fact have used before in series and sequence problems. But this time I actually found a simpler solution that avoids all these. You also need to remember what a factorial is: $n!=n(n-1)(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$.

My Solution

We can write the series as follows (we assume all series converge):

$$
\begin{aligned}
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots+\frac{n-1}{n!}+\ldots & =\sum_{n=2}^{\infty} \frac{n-1}{n!} \\
& =\sum_{n=2}^{\infty} \frac{n}{n!}-\sum_{n=2}^{\infty} \frac{1}{n!} \\
& =\sum_{n=2}^{\infty} \frac{1}{(n-1)!}-\sum_{n=2}^{\infty} \frac{1}{n!} \\
& =\sum_{n=1}^{\infty} \frac{1}{n!}-\sum_{n=2}^{\infty} \frac{1}{n!} \\
& =1+\sum_{n=2}^{\infty} \frac{1}{n!}-\sum_{n=2}^{\infty} \frac{1}{n!} \\
& =1
\end{aligned}
$$

Simple! (Actually, I guess my solution is essentially Talwalkar's "Method 2: telescoping sum", but in perhaps a simpler guise.)

Talwalkar's Solutions

When I saw the problem, I worked it out by mathematical induction. Then I researched methods and found a post on Quora ${ }^{2}$ with solutions using a telescoping sum and a power series. I will present all three ways since it is always good to know different problem solving methods.

[^0]
Method 1: mathematical induction

Consider the partial sum:

$$
S(n)=1 / 2!+2 / 3!+3 / 4!+\ldots+n /(n+1)!
$$

We can calculate some values to establish a pattern:

$$
\begin{aligned}
& S(1)=1 / 2!=1 / 2=1-1 / 2! \\
& S(2)=S(1)+2 / 3!=1 / 2+2 / 6=5 / 6=1-1 / 3! \\
& S(3)=S(2)+3 / 4!=5 / 6+3 / 24=23 / 24=1-1 / 4!
\end{aligned}
$$

From the calculations, we might conjecture a formula for the partial sum is:

$$
S(n)=1-n /(n+1)!
$$

We will prove this by induction. We have established the base cases of $n=1,2,3$. We now suppose the formula is true for some $n=k$, and we will show that if $S(k)$ is true then $S(k+1)$ is true.

$$
S(k+1)=S(k)+(k+1) /(k+2)!
$$

By the induction hypothesis we have $S(k)=1-1 /(k+1)$!, so we can simplify:

$$
S(k)+(k+1) /(k+2)!=1-1 /(k+1)!+(k+1) /(k+2)!
$$

Now we will multiply the second term by $(k+2) /(k+2)$ and simplify:

$$
\begin{aligned}
1-(k+2) /[(k+1)!(k+2)]+(k+1) /(k+2)! & =1-(k+2) /(k+2)!+(k+1) /(k+2)! \\
& =1-1 /(k+2)!
\end{aligned}
$$

This verifies the second step of induction, and thus the induction formula is true.
We then have the infinite series S is the limit of $S(n)$ as n goes to infinity. Since $1 /(n+2)$! will go to 0 as n goes to infinity, we will have:

$$
S=1-0=1
$$

Thus the infinite series has a value equal to 1 .

Method 2: telescoping sum

We again start by considering the partial sum.

$$
S(n)=1 / 2!+2 / 3!+3 / 4!+\ldots+n /(n+1)!
$$

We now will re-write each term in the sum using a trick of adding and subtracting 1 to the numerator.

$$
\begin{aligned}
k /(k+1)! & =(k+1-1) /(k+1)! \\
& =(k+1) /(k+1)!-1 /(k+1)! \\
& =1 / k!-1 /(k+1)!
\end{aligned}
$$

We can apply this formula to each term in the sum to get:

$$
\begin{aligned}
S(n) & =1 / 2!+2 / 3!+3 / 4!+\ldots+n /(n+1)! \\
& =1 / 1!-1 / 2!+1 / 2!-1 / 3!+1 / 3!-1 / 4!+\ldots+1 / n!-1 /(n+1)! \\
& =1 / 1!+(-1 / 2!+1 / 2!)+(-1 / 3!+1 / 3!)+(-1 / 4!+1 / 4!)+\ldots+(-1 / n!+1 / n!)-1 /(n+1)! \\
& =1 / 1!-1 /(n+1)!
\end{aligned}
$$

$$
=1-1 /(n+1)!
$$

We thus have the same partial sum as method 1 . We then take the limit as n goes to infinity to conclude the sum of the infinite series is equal to 1 .

Method 3: power series

Since the sum involves denominators with increasing values of the factorial function, we can think about the power series for the exponential function.

$$
e^{\mathrm{x}}=1+x / 1!+x^{2} / 2!+x^{3} / 3!+x^{4} / 4!+\ldots
$$

We somehow want to get the infinite series with a general term $k /(k+1)$!. To do that, we will divide both sides by x and then take the derivative of both sides.

$$
e^{\mathrm{x}} / x=1 / x+1 / 1!+x / 2!+x^{2} / 3!+x^{3} / 4!+\ldots
$$

Now we take the derivative of each side to get:

$$
\left(x e^{x}-e^{x}\right) / x^{2}=-1 / x^{2}+0+1 / 2!+2 x / 3!+3 x^{2} / 4!+\ldots
$$

We then substitute $x=1$.

$$
\begin{aligned}
& \left(e^{1}-e^{1}\right) / 1^{2}=-1 / 1+0+1 / 2!+2 / 3!+3 x^{2} / 4!+\ldots \\
& 0=-1+1 / 2!+2 / 3!+3 / 4!+\ldots \\
& 0=-1+S \\
& S=1
\end{aligned}
$$

Thus the infinite series has a value equal to 1 -what an incredible way to solve this problem!

Special thanks this month to:

Michael Anvari
Robert Zarnke
Fiona Harper
Kyle
Jamal Jackson
Mike Robertson
Thanks to all supporters on Patreon! ${ }^{3}$

Reference

I learned about methods 2 and 3 on Quora
https://www.quora.com/What-is-sum-of-the-series-1-2-+2-3-+3-4-+-to-infinity
© 2021 James Stevenson

[^1]
[^0]: 1 Oct $2021 \mathrm{https}: / /$ mindyourdecisions.com/blog/2021/10/04/a-nice-factorial-sum-from-france/
 ${ }^{2}$ https://www.quora.com/What-is-sum-of-the-series-1-2-+2-3-+3-4-+-to-infinity

[^1]: 3 http://www.patreon.com/mindyourdecisions

