15 Degree Triangle Puzzle

Jim Stevenson

17 June 2022

This math problem from Colin Hughes's *Maths Challenge* website (mathschallenge.net) ([1]) is a bit more challenging.

In the diagram, AB represents the diameter, C lies on the circumference of the circle, and you are given that

(Area of Circle) / (Area of Triangle) = 2π .

Prove that the two smaller angles in the triangle are exactly 15° and 75° respectively.

My Solution

Parameterize the diagram as shown in Figure 1. If we can show θ is 30°, then the inscribed angle at B will be half that or 15° and the angle at A will be 90° – 15° = 75°. (Recall that an inscribed triangle with side a diameter must be a right triangle.)

Using the problem constraint on the ratio of areas,

$$\pi r^2 / \frac{1}{2} xy = 2\pi$$

we get

$$r^2 = xy.$$

Now we apply the Law of Cosines¹ twice to get

$$x^{2} = 2r^{2} - 2r^{2} \cos \theta = 2r^{2}(1 - \cos \theta)$$

$$y^{2} = 2r^{2} - 2r^{2} \cos (\pi - \theta) = 2r^{2} + 2r^{2} \cos \theta = 2r^{2} (1 + \cos \theta)$$

Multiplying these two equations yields

$$(xy)^2 = 4r^4(1 - \cos^2 \theta) \implies r^4 = 4r^4(\sin^2 \theta) \implies \sin^2 \theta = \frac{1}{4} \implies \sin \theta = \frac{1}{2} \implies \theta = 30^\circ$$

and we are done.

Maths Challenge Solutions

Apparently, there are at least three other ways of solving this problem.

We shall consider three quite different solutions to this problem.

Method 1

As triangle ABC is in a semi-circle, angle ACB is a right angle. Let angle CBA = θ , AB = 2r, AC = 2r sin θ , and BC = 2r cos θ . Therefore

¹ $c^2 = a^2 + b^2 - 2ab \cos \theta$, where $\frac{a}{b}$

the area of triangle = $4r^2 \sin \theta \cos \theta / 2 = 2r^2 \sin \theta \cos \theta$,

and using the double angle identity: $\sin 2\theta = 2 \sin \theta \cos \theta$,

area of triangle = $r^2 \sin 2\theta$.

So,

(Area of Circle) / (Area of Triangle) =
$$\pi r^2 / r^2 \sin 2\theta = \pi / \sin 2\theta = 2\pi$$

$$\therefore \sin 2\theta = 1/2 \implies 2\theta = 30^\circ \implies \theta = 15^\circ$$

Hence the complementary angle must be 75 degrees.

Method 2

In the diagram, CD is perpendicular to AB. Let the diameter, AB = 2r, OC = r, OD = x, and CD = y. Therefore

the area of triangle =
$$2ry / 2 = ry$$
.

So,

 $\pi r^2 / ry = \pi r / y = 2\pi \implies r = 2y$

Using the Pythagorean Theorem, $x^2 + y^2 = r^2$, so

$$x^{2} + y^{2} = 4y^{2}x^{2} = 3y^{2} \implies x = \sqrt{3} y.$$

Let angle DOC = θ . Therefore

$$\tan \theta = y/x = y/\sqrt{3}y = 1/\sqrt{3} \implies \theta = 30^{\circ}.$$

By using the result that the angle at the centre of a circle (AOC) is twice the angle at the circumference, we deduce that angle $ABC = 15^{\circ}$, and it follows that the complementary angle must be 75 degrees.

Method 3

In triangle ABC, let BC = a, AC = b, and AB = c. Because the angle in a semi-circle is a right angle, area of triangle = ab/2, and using the Pythagorean theorem, $a^2 + b^2 = c^2$.

As radius, r = c/2,

$$r^{2} = c^{2}/4 = (a^{2} + b^{2})/4.$$

∴ $\pi(a^{2} + b^{2})/4 / (ab/2) = 2\pi$
 $(a^{2} + b^{2}) / 2ab = 2$
∴ $a^{2} + b^{2} = 4ab$
∴ $a/b + b/a = 4$

But in triangle ABC, $\tan A = a/b$ and $\tan B = b/a$, so

$$\tan A + \tan B = 4.$$

However,

$$\tan B = \tan(90 - A) = 1/\tan A$$

Therefore,

By letting $t = \tan A$, we get t + 1/t = 4. This leads to the quadratic, $t^2 - 4t + 1 = 0$, which has roots $t = \tan A = 2 \pm \sqrt{3}$.

We will now show that the root corresponding with $\tan A = 2 - \sqrt{3}$ is exactly 15 degrees. Let $T = \tan 15$ and by using the trigonometric identity,

$$an 2x = 2\tan x / (1 - \tan 2x)$$

we get

$$\tan 30 = 1/\sqrt{3} = 2T/(1-T^2).$$

This leads to the quadratic,

 $T^2 + 2\sqrt{3} T - 1 = 0,$

which has two roots, $T = -\sqrt{3} \pm 2$. However, as $\tan 15 > 0$, we take the positive root \Rightarrow

 $\tan 15 = 2 - \sqrt{3}$.

Hence the complementary angle must be 75 degrees.

References

[1] Hughes, Colin, "15 Degree Triangle", *Maths Challenge*, (mathschallenge.net) (11 October 2009)
 #362 p.1. Difficulty: 4 Star. "A four-star problem: A comprehensive knowledge of school mathematics and advanced mathematical tools will be required."

© 2022 James Stevenson