15 Degree Triangle Puzzle

Jim Stevenson

17 June 2022

This math problem from Colin Hughes's Maths Challenge website (mathschallenge.net) ([1]) is a bit more challenging.

In the diagram, AB represents the diameter, C lies on the circumference of the circle, and you are given that
$($ Area of Circle $) /($ Area of Triangle $)=2 \pi$.
Prove that the two smaller angles in the triangle are exactly 15° and 75° respectively.

My Solution

Parameterize the diagram as shown in Figure 1. If we can show θ is 30°, then the inscribed angle at B will be half that or 15° and the angle at A will be $90^{\circ}-15^{\circ}=75^{\circ}$. (Recall that an inscribed triangle with side a diameter must be a right triangle.)

Using the problem constraint on the ratio of areas,

$$
\pi r^{2} / 1 / 2 x y=2 \pi,
$$

we get

$$
r^{2}=x y .
$$

Now we apply the Law of Cosines ${ }^{1}$ twice to get

$$
\begin{aligned}
& x^{2}=2 r^{2}-2 r^{2} \cos \theta=2 r^{2}(1-\cos \theta) \\
& y^{2}=2 r^{2}-2 r^{2} \cos (\pi-\theta)=2 r^{2}+2 r^{2} \cos \theta=2 r^{2}(1+\cos \theta)
\end{aligned}
$$

Figure 1

Multiplying these two equations yields

$$
(x y)^{2}=4 r^{4}\left(1-\cos ^{2} \theta\right) \Rightarrow r^{4}=4 r^{4}\left(\sin ^{2} \theta\right) \Rightarrow \sin ^{2} \theta=1 / 4 \Rightarrow \sin \theta=1 / 2 \Rightarrow \theta=30^{\circ}
$$

and we are done.

Maths Challenge Solutions

Apparently, there are at least three other ways of solving this problem.
We shall consider three quite different solutions to this problem.

Method 1

As triangle ABC is in a semi-circle, angle ACB is a right angle. Let angle $\mathrm{CBA}=\theta, \mathrm{AB}=2 r$, $\mathrm{AC}=2 r \sin \theta$, and $\mathrm{BC}=2 r \cos \theta$. Therefore

[^0]the area of triangle $=4 r^{2} \sin \theta \cos \theta / 2=2 r^{2} \sin \theta \cos \theta$,
and using the double angle identity: $\sin 2 \theta=2 \sin \theta \cos \theta$,
$$
\text { area of triangle }=r^{2} \sin 2 \theta .
$$

So,

$$
\begin{gathered}
\left(\text { Area of Circle) } /(\text { Area of Triangle })=\pi r^{2} / r^{2} \sin 2 \theta=\pi / \sin 2 \theta=2 \pi\right. \\
\therefore \sin 2 \theta=1 / 2 \Rightarrow 2 \theta=30^{\circ} \Rightarrow \theta=15^{\circ} .
\end{gathered}
$$

Hence the complementary angle must be 75 degrees.

Method 2

In the diagram, CD is perpendicular to AB . Let the diameter, $\mathrm{AB}=2 r, \mathrm{OC}=r, \mathrm{OD}=x$, and $\mathrm{CD}=y$. Therefore

$$
\text { the area of triangle }=2 r y / 2=r y .
$$

So,

$$
\begin{gathered}
(\text { Area of Circle }) /(\text { Area of Triangle })= \\
\pi r^{2} / r y=\pi r / \mathrm{y}=2 \pi \Rightarrow r=2 y
\end{gathered}
$$

Using the Pythagorean Theorem, $x^{2}+y^{2}=r^{2}$, so

$$
x^{2}+y^{2}=4 y^{2} x^{2}=3 y^{2} \Rightarrow x=\sqrt{3} y .
$$

Let angle $\mathrm{DOC}=\theta$. Therefore

Figure 2

$$
\tan \theta=y / x=y / \sqrt{ } 3 y=1 / \sqrt{ } 3 \Rightarrow \theta=30^{\circ}
$$

By using the result that the angle at the centre of a circle (AOC) is twice the angle at the circumference, we deduce that angle $\mathrm{ABC}=15^{\circ}$, and it follows that the complementary angle must be 75 degrees.

Method 3

In triangle ABC , let $\mathrm{BC}=a, \mathrm{AC}=b$, and $\mathrm{AB}=c$. Because the angle in a semi-circle is a right angle, area of triangle $=a b / 2$, and using the Pythagorean theorem, $a^{2}+b^{2}=c^{2}$.

As radius, $r=c / 2$,

$$
\begin{gathered}
r^{2}=c^{2} / 4=\left(a^{2}+b^{2}\right) / 4 . \\
\therefore \pi\left(a^{2}+b^{2}\right) / 4 /(a b / 2)=2 \pi \\
\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 2 \mathrm{ab}=2 \\
\therefore \mathrm{a}^{2}+\mathrm{b}^{2}=4 \mathrm{ab} \\
\therefore \mathrm{a} / \mathrm{b}+\mathrm{b} / \mathrm{a}=4
\end{gathered}
$$

But in triangle $A B C, \tan A=a / b$ and $\tan B=b / a$, so

$$
\tan \mathrm{A}+\tan \mathrm{B}=4
$$

However,

$$
\tan \mathrm{B}=\tan (90-\mathrm{A})=1 / \tan \mathrm{A} .
$$

Therefore,

$$
\tan \mathrm{A}+1 / \tan \mathrm{A}=4
$$

By letting $t=\tan \mathrm{A}$, we get $t+1 / t=4$. This leads to the quadratic, $t^{2}-4 t+1=0$, which has roots $t=$ $\tan \mathrm{A}=2 \pm \sqrt{3}$.

We will now show that the root corresponding with $\tan A=2-\sqrt{3}$ is exactly 15 degrees. Let $T=\tan 15$ and by using the trigonometric identity,

$$
\tan 2 x=2 \tan x /(1-\tan 2 x),
$$

we get

$$
\tan 30=1 / \sqrt{ } 3=2 T /\left(1-T^{2}\right) .
$$

This leads to the quadratic,

$$
T^{2}+2 \sqrt{ } 3 T-1=0,
$$

which has two roots, $T=-\sqrt{ } 3 \pm 2$. However, as $\tan 15>0$, we take the positive root \Rightarrow

$$
\tan 15=2-\sqrt{ } 3
$$

Hence the complementary angle must be 75 degrees.

References

[1] Hughes, Colin, "15 Degree Triangle", Maths Challenge, (mathschallenge.net) (11 October 2009) \#362 p.1. Difficulty: 4 Star. "A four-star problem: A comprehensive knowledge of school mathematics and advanced mathematical tools will be required."
© 2022 James Stevenson

[^0]: $1 \quad c^{2}=a^{2}+b^{2}-2 a b \cos \theta$, where

