Sizing Up

25 July 2020

Jim Stevenson

This is another fairly simple puzzle from Futility Closet ([1]) from a while ago (2014).

Two lines divide this equilateral triangle into four sections. The shaded sections have the same area. What is the measure of the obtuse angle between the lines?

My Solution

Figure 1 Equal Area Triangles

First notice that the colored triangles in Figure 1 have the same area, because the non-overlapped areas are the same from the problem statement and they share a common area in the overlap.

This means the two triangles are congruent (Figure 2). This follows because they share a common angle $\left(60^{\circ}\right)$ and a common side or base (equilateral triangle). For their areas to be the same,

Figure 2 Congruent Triangles they must have a common altitude as well. From that and trigonometry we can derive that the other two sides are equal and so the triangles are congruent.

Figure 3 Rotated Triangles
This means we can rotate the pink triangle to lie along the base of the equilateral triangle and then slide it to the right over the blue congruent triangle (Figure 3). The rotation is $180^{\circ}-60^{\circ}=120^{\circ}$, which corresponds to the obtuse angle θ.

Futility Closet Solution

Triangles CAM and ABN have the same area. Rotating triangle $\mathrm{ABC} 120^{\circ}$ takes CAM into ABM1. Since ABN and ABM1 have the same area and both N and M1 fall on BC, N = M1. Since rotating CM produces AN, the angle between them is 120°, or $180^{\circ}-120^{\circ}=60^{\circ}$, which is the same.
(Posed by V. Proizvolov in Math Horizons, Spring 1994.)

Comment.

Proizvolov's problem was also in Quantum ([2]) and the Futility Closet solution is the same as the one given in Quantum. As I did in my own argument (see Figure 2), I think there needs to be some explicit

Figure 4 Futility Closet Solution justification for claiming the two triangles with the same area are congruent.

Here is the figure from the Quantum statement of the problem:

References

[1] "Sizing Up," Futility Closet, 25 November 2014
(http://www.futilitycloset.com/2014/11/25/sizing-up/, retrieved 6/19/2015)
[2] "Cutting an equilateral triangle", B105 "Brainteasers" Quantum Vol. 4 No.3, Jan-Feb 1994. p. 11
© 2020 James Stevenson

