Meeting on the Bridge

10 August 2020

Jim Stevenson

Here is another Brainteaser from the Quantum math magazine ([1]).

Nick left Nicktown at 10:18 A.M. and arrived at Georgetown at 1:30 P.M., walking at a constant speed. On the same day, George left Georgetown at 9:00 A.M. and arrived at Nicktown at 11:40 A.M., walking at a constant speed along the same road. The road crosses a wide river. Nick and George arrived at the bridge simultaneously, each from his side of the river. Nick left the bridge 1 minute later than George. When did they arrive at the bridge?

My Solution

Figure 1 shows the setup. D represents the distance between Nicktown and Georgetown, D_{1} the distance Nick travels from Nicktown to the bridge, D_{2} the distance George travels from Georgetown to the bridge, and D_{B} the distance across the bridge. T is the time George takes to reach the bridge and T_{B} the time it takes for him to cross the bridge. Finally, v_{N} is Nick's walking speed and v_{G} is George's walking speed. We will represent time in minutes, so it takes Nick 3 hrs $12 \mathrm{~min}=192$ minutes to travel from Nicktown to Georgetown, and George $2 \mathrm{hrs} 40 \mathrm{~min}=160$ minutes to travel from Georgetown to Nicktown. Nick starts $1 \mathrm{hr} 18 \mathrm{~min}=78$ minutes after George has left.

Figure 1 My Solution
So we have the following three equations.
(entire distance D)

$$
\begin{equation*}
\mathrm{v}_{\mathrm{N}} 192=\mathrm{D}=\mathrm{v}_{\mathrm{G}} 160 \tag{1}
\end{equation*}
$$

(bridge length D_{B})

$$
\begin{equation*}
\mathrm{v}_{\mathrm{N}}\left(\mathrm{~T}_{\mathrm{B}}+1\right)=\mathrm{D}_{\mathrm{B}}=\mathrm{v}_{\mathrm{G}} \mathrm{~T}_{\mathrm{B}} \tag{2}
\end{equation*}
$$

(bridge to Georgetown D_{2}) $\quad \mathrm{v}_{\mathrm{G}} \mathrm{T}=\mathrm{D}_{2}=\mathrm{v}_{\mathrm{N}}\left(192-(\mathrm{T}-78)-\left(\mathrm{T}_{\mathrm{B}}+1\right)\right.$)

Equation (1) implies

$$
\mathrm{v}_{\mathrm{G}} / \mathrm{v}_{\mathrm{N}}=6 / 5
$$

which together with equation (2) implies

$$
\mathrm{T}_{\mathrm{B}}=5 \mathrm{~min} .
$$

Substituting these values into equation (3) yields

$$
(6 / 5) \mathrm{T}=264-\mathrm{T}
$$

or

$$
(11 / 5) \mathrm{T}=264
$$

or

$$
\mathrm{T}=120 \mathrm{~min}=2 \mathrm{hrs}
$$

Therefore, Nick and George meet at the bridge at 9:00 $+2: 00=11: 00$ AM.

Quantum Solution

It took Nick 3 hours 12 minutes-that is, $16 / 5$ hours-to reach Georgetown, and it took George 2 hours 40 minutes-that is, $8 / 3$ hours-to reach Nicktown. Denoting the distance between the towns by L miles, we find that Nick was walking at a speed of $5 L / 16 \mathrm{mph}$ and George's speed was $3 L / 8$ mph . We can determine the length of the bridge ℓ, since we know that George crossed it one minute faster than Nick:

$$
16 \ell / 5 L-8 \ell / 3 L=1 / 60 .
$$

This yields $\ell=L / 32$. Let t be the moment the boys reached the bridge. At this moment, the total distance walked by both boys was

$$
L-L / 32=31 L / 32 .
$$

On the other hand, this equals the sum of the distances walked by each of them-that is,

$$
\frac{5 L}{16}\left(t-\left(10+\frac{3}{10}\right)\right)+\frac{3 L}{8}(t-9)
$$

Setting these expressions equal to each other, we obtain

$$
\frac{L}{16}\left(11 t-\frac{211}{2}\right)=\frac{31 L}{32}
$$

which gives us $\mathrm{t}=11$ o'clock.

References

[1] "Meeting on the Bridge" B309 "Brainteasers" Quantum Vol.11, No.2, National Science Teachers Assoc., Springer-Verlag, Nov-Dec 2000. p. 3

