Turning Wheels Puzzle

10 November 2021

Jim Stevenson

This is a thoughtful little problem from Posamentier's and Lehmann's *Mathematical Curiosities* ([1]).

We have nine wheels touching each other with diameters successively increasing by 1 cm. Beginning with 1 cm as the smallest circle, and 9 cm for the largest circle, how many degrees does the largest circle turn when the smallest circle turns by 90°?

My Solution

Let the radius of the i^{th} circle be r_i cm and the angle it turns θ_i radians. Then each circle must turn the same amount of its circumference as the initial circle, so

	$r_1\theta_1 = r_2\theta_2 = \ldots = r_9\theta_9$
Therefore,	$2r_1\theta_1=2r_9\theta_9$
and so	$1 \cdot \pi/2 = 9 \theta_9$
or	$\theta_9 = \pi/18 = 180^{\circ}/18 = 10^{\circ}$
mu toth tothe	

Thus the 9^{th} circle turns 10° .

Posamentier's Solution

My solution is essentially the same as Posamentier's, only with more steps filled in.

A point on the circumference of a circle with diameter *d* that rotates α degrees will turn $\frac{\alpha}{360}\pi d$, where the circumference is πd . To determine the motion that we require here of α degrees is $\frac{90}{360}\pi \cdot 1 = \frac{\alpha}{360}\pi \cdot 9$, which gives us $\alpha = 10^{\circ}$.

References

[1] Posamentier, Alfred S. and Ingmar Lehmann, *Mathematical Curiosities: A Treasure Trove of Unexpected Entertainments*, Prometheus Books, 2014

© 2021 James Stevenson