Turning Wheels Puzzle

10 November 2021
Jim Stevenson

This is a thoughtful little problem from Posamentier's and Lehmann's Mathematical Curiosities ([1]).

We have nine wheels touching each other with diameters successively increasing by 1 cm . Beginning with 1 cm as the smallest circle, and 9 cm for the largest circle, how many degrees does the largest circle turn when the smallest circle turns by 90° ?

My Solution

Let the radius of the $i^{\text {th }}$ circle be $r_{i} \mathrm{~cm}$ and the angle it turns θ_{i} radians. Then each circle must turn the same amount of its circumference as the initial circle, so

$$
r_{1} \theta_{1}=r_{2} \theta_{2}=\ldots=r_{9} \theta_{9}
$$

Therefore,

$$
\begin{gathered}
2 r_{1} \theta_{1}=2 r_{9} \theta_{9} \\
1 \cdot \pi / 2=9 \theta_{9}
\end{gathered}
$$

and so
or

$$
\theta_{9}=\pi / 18=180^{\circ} / 18=10^{\circ}
$$

Thus the $9^{\text {th }}$ circle turns 10°.

Posamentier's Solution

My solution is essentially the same as Posamentier's, only with more steps filled in.
A point on the circumference of a circle with diameter d that rotates α degrees will turn $\frac{\alpha}{360} \pi d$, where the circumference is πd. To determine the motion that we require here of α degrees is $\frac{90}{360} \pi \cdot 1=\frac{\alpha}{360} \pi \cdot 9$, which gives us $\alpha=10^{\circ}$.

References

[1] Posamentier, Alfred S. and Ingmar Lehmann, Mathematical Curiosities: A Treasure Trove of Unexpected Entertainments, Prometheus Books, 2014
© 2021 James Stevenson

