Log Jam

29 October 2021

Jim Stevenson

Here is a tricky little logarithm problem from the 2021 Math Calendar ([1]).

Find x, where

$$
\log _{2}\left(\log _{4}(x)\right)=\log _{4}\left(\log _{2}(x)\right)
$$

As before, recall that all the answers are integer days of the month.

Solution

From the left-hand side we have $z=\log _{4} x$ and $y=\log _{4} z$ implies $4^{z}=x$ and $2^{y}=z$. And from the right-hand side we have $u=\log _{4} x$ and $v=\log _{4} u$ implies $2^{u}=$ x and $4^{v}=u$. So the equation says $y=v$. Therefore,
so
or

$$
x=4^{2^{y}}=2^{2^{y+1}} \text { and } x=2^{4^{y}}=2^{2^{2 v}}=2^{2^{2 y}} \text { since } y=v .
$$

Therefore,

$$
\begin{gathered}
y+1=2 y \\
y=1 \\
x=4^{2}=16 .
\end{gathered}
$$

References

[1] Rapoport, Rebecca and Dean Chung, Mathematics 2021: Your Daily epsilon of Math, Rock Point, Quarto Publishing Group, New York, 2021. May
© 2021 James Stevenson

