Circle Chord Problem

24 September 2021

Jim Stevenson

This is another nice puzzle from the Scottish Mathematical Council (SMC) Senior Mathematical Challenge of 2008 ([1]).

The triangle *ABC* is inscribed in a circle of radius 1. Show that the length of the side *AB* is given by 2 sin c° , where c° is the size of the interior angle of the triangle at *C*.

The diagram shows the case where C is on the same side of the chord AB as the center of the circle. There is a second case to consider where C is on the other side of the chord from the center.

My Solution

Case 1. If the vertex C is moved anywhere around the large arc of the circle from A to B, the value of c° remains the same, since it is an inscribed angle subtending the same (short) arc of the circle from A to B. Therefore the problem does not change if we move C to C' such that AC' is a diameter of the circle (Figure 1). But that means ABC' is a right triangle with hypotenuse 2, so that we immediately have

Case 2. If the vertex C is on the other side of the chord AB from the center, then

$$d^{\circ} = (360^{\circ} - 2c^{\circ})/2 = 180^{\circ} - c^{\circ}$$

is an inscribed angle that subtends AB as in Case 1 (Figure 2). Therefore,

 $AB = 2 \sin d^{\circ} = 2 \sin (180^{\circ} - c^{\circ}) = 2(\sin 180^{\circ} \cos c^{\circ} - \sin c^{\circ} \cos 180^{\circ}) = 2(0 - \sin c^{\circ} (-1)) = 2 \sin c^{\circ}$

SMC Solution

This is the SMC solution ([2]).

- 1. Let the centre of the circle be *O*, and let the interior angles at the vertices *A*, *B* and *C* be *a*, *b* and *c*, respectively. (Clearly, from the sine rule, ${}^{1}AB = k \sin c$. It's a matter of determining the value of *k*).
- 2. Consider two situations: $\angle C$ is acute (Figure 3), and $\angle C$ is obtuse (Figure 4).
- 3. For both Figs: draw *OA*, *OB* (each length 1), and draw the perpendicular *OX*. Note that, since $\triangle AOB$ is isosceles, AX = XB and $\angle AOX = \angle BOX$.
- 4. Figure 3: $\angle AOB = 2c$ (angle at centre is twice that at circumference from common chord proof given below). Similarly, in Figure 4: $\angle AOB = 2$ (180 *c*).
- 5. Figure 3: from triangle AOB, $AB = 2 \sin (\frac{1}{2} \angle AOB) = 2 \sin c$. Similarly, for Figure 4: from triangle AOB, $AB = 2 \sin (\frac{1}{2} \angle AOB) = 2 \sin (180 c) = 2 \sin c$.

Conclusion The length of *AB* is 2 sin *c* as required.

Proof of 4: Consider a chord *PQ* of a circle centre *O*, and any diameter *RS* which cuts the chord inside the circle, where *R* lies on the shorter arc between *P* and *Q*. Angles *SPR* and *SQR* are both right angles. Let $x = \angle PRS$, $y = \angle QRS$, $u = \angle POS$ and $v = \angle QOS$. Triangles *POR* and *QOR* are isosceles, so u = 2x and v = 2y. The angle at the centre is $\angle POQ = u + v$, and the angle at *R*, on the circumference, is $\angle PRQ = x + y$. Thus, $\angle POQ = u + v = 2x + 2y = 2(x + y) = 2\angle PRQ$.

References

- [1] "Senior Division: Problems 2" *Mathematical Challenge 2007–2008*, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-2007-08-Q2.pdf)
- [2] "Senior Division: Problems 2 Solutions" *Mathematical Challenge* 2007–2008, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-2007-08-S2.pdf)

© 2021 James Stevenson

¹ JOS: I am not sure which "sine rule" they are referring to.