Circle Chord Problem

24 September 2021

Jim Stevenson

This is another nice puzzle from the Scottish Mathematical Council (SMC) Senior Mathematical Challenge of 2008 ([1]).

The triangle $A B C$ is inscribed in a circle of radius 1 . Show that the length of the side $A B$ is given by $2 \sin c^{\circ}$, where c° is the size of the interior angle of the triangle at C.

The diagram shows the case where C is on the same side of the chord AB as the center of the circle. There is a second case to consider where C is on the other side of the chord from the center.

My Solution

Case 1. If the vertex C is moved anywhere around the large arc of the circle from A to B, the value of c° remains the same, since it is an inscribed angle subtending the same (short) arc of the circle from A to B. Therefore the problem does not change if we move C to C^{\prime} such that AC^{\prime} is a diameter of the circle (Figure 1). But that means ABC^{\prime} is a right triangle with hypotenuse 2, so that we immediately have

$$
\mathrm{AB}=2 \sin \mathrm{c}^{\circ} .
$$

Figure 1

Figure 2

Case 2. If the vertex C is on the other side of the chord $A B$ from the center, then

$$
\mathrm{d}^{\circ}=\left(360^{\circ}-2 \mathrm{c}^{\circ}\right) / 2=180^{\circ}-\mathrm{c}^{\circ}
$$

is an inscribed angle that subtends AB as in Case 1 (Figure 2). Therefore,
$\mathrm{AB}=2 \sin \mathrm{~d}^{\circ}=2 \sin \left(180^{\circ}-\mathrm{c}^{\circ}\right)=2\left(\sin 180^{\circ} \cos \mathrm{c}^{\circ}-\sin \mathrm{c}^{\circ} \cos 180^{\circ}\right)=2\left(0-\sin \mathrm{c}^{\circ}(-1)\right)=2 \sin \mathrm{c}^{\circ}$

SMC Solution

This is the SMC solution ([2]).

1. Let the centre of the circle be O, and let the interior angles at the vertices A, B and C be a, b and c, respectively. (Clearly, from the sine rule, ${ }^{1} A B=k \sin c$. It's a matter of determining the value of k).
2. Consider two situations: $\angle C$ is acute (Figure 3), and $\angle C$ is obtuse (Figure 4).
3. For both Figs: draw $O A, O B$ (each length 1), and draw the perpendicular $O X$. Note that, since $\triangle A O B$ is isosceles, $A X=X B$ and $\angle A O X=\angle B O X$.
4. Figure 3: $\angle A O B=2 c$ (angle at centre is twice that at circumference from common chord - proof given below). Similarly, in Figure 4: $\angle A O B=2(180-c)$.
5. Figure 3: from triangle $A O B, A B=2 \sin (1 / 2 \angle A O B)=2 \sin c$. Similarly, for Figure 4: from triangle $A O B, A B=2 \sin (1 / 2 \angle A O B)=2 \sin (180-c)=2 \sin c$.
Conclusion The length of $A B$ is $2 \sin c$ as required.
Proof of 4: Consider a chord $P Q$ of a circle centre O, and any diameter $R S$ which cuts the chord inside the circle, where R lies on the shorter arc between P and Q. Angles $S P R$ and $S Q R$ are both right angles. Let $x=\angle P R S, y=\angle Q R S, u=\angle P O S$ and $v=\angle Q O S$. Triangles $P O R$ and $Q O R$ are isosceles, so $u=2 x$ and $v=2 y$. The angle at the centre is $\angle P O Q=u+v$, and the angle at R, on the circumference, is $\angle P R Q=x+y$. Thus, $\angle P O Q=u+v=2 x+2 y=2(x+y)=2 \angle P R Q$.

References

[1] "Senior Division: Problems 2" Mathematical Challenge 2007-2008, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-2007-08-Q2.pdf)
[2] "Senior Division: Problems 2 Solutions" Mathematical Challenge 2007-2008, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-2007-08-S2.pdf)
© 2021 James Stevenson

[^0]
[^0]: 1 JOS: I am not sure which "sine rule" they are referring to.

