## Polygon Rings

24 September 2021

## Jim Stevenson



This is a nice geometric problem from the Scottish Mathematical Council (SMC) Senior Mathematical Challenge of 2008 ([1]).

Mahti has cut some regular pentagons out of card and is joining them together in a ring. How many pentagons will there be when the ring is complete?

She then decides to join the pentagons with squares which have the same edge length and wants to make a ring as before. Is it possible? If so, determine how many pentagons and squares make up the ring and if not, explain why.

## My Solution

We can find the interior angles of the regular pentagon by moving a tangent vector around the figure back to its starting point. The vector will make 5 equal rotations at each vertex to make a total of $360^{\circ}$. Therefore the rotation at each vertex is $72^{\circ}$, and so the corresponding interior angle at the vertex is $180^{\circ}-72^{\circ}=108^{\circ}$.

Now consider the ring of regular pentagons. As shown in Figure 1, the inner edge of each pentagon will make an angle of $36^{\circ}$ with the preceding pentagon's inner edge. If we can make a ring of $n$ pentagons, then $n 36^{\circ}=360^{\circ}$. So $n=10$, which is an integer. Therefore 10 pentagons will make a ring.


Figure 1


Figure 2

Now consider Figure 2. Each inner edge makes an angle of $18^{\circ}$ with its predecessor. So if there is a ring of these regular polygons, then $n 18^{\circ}=360^{\circ}$ for some integer $n$. In this case $n=20$. That means there are 10 square-pentagon pairs completing the ring and we don't end up with two adjacent pentagons or two adjacent squares in the ring.

## SMC Solution

This is the SMC Solution ([2]).
If $a_{n}{ }^{\circ}$ is the internal angle of a regular $n$-gon, then splitting it into identical isosceles triangles we see that $n a_{n}+360=180 n$ so that $a_{n}=180(1-2 / n)$. So the internal angle of a regular pentagon is $108^{\circ}$. So the internal angle of the ring made out of pentagons is $(360-2 \times 108)^{\circ}$ which is $144^{\circ}$ which is the internal angle of a regular $10-$ gon. So there will be 10 pentagons in the ring.

For the pentagons and the squares, they will fit together in a ring if we can find a regular $n$-gon for some even number whose internal angle is $b^{\circ}$ where

$$
b=360-(108+90)=162=180(1-2 / n) .
$$

So $n=20$. Thus they do form a ring which contains 10 pentagons and 10 squares.

## References

[1] "Senior Division: Problems 2" Mathematical Challenge 2007-2008, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-2007-08-Q2.pdf)
[2] "Senior Division: Problems 2 Solutions" Mathematical Challenge 2007-2008, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-2007-08-S2.pdf)
© 2021 James Stevenson

