Circumscribed House Problem

23 September 2021

Jim Stevenson

Here is another problem from the "Brainteasers" section of the Quantum magazine ([1]).

Side AE of pentagon ABCDE equals its diagonal BD . All the other sides of this pentagon are equal to 1 . What is the radius of the circle passing through points A, C, and E ?

My Solution

Pass a circle of radius 1 centered at vertex C through the other vertices B and D (Figure 1). Then translate this circle 1 unit down until the original points at B and D coincide with points A and E (Figure 2). Then the top of the translated circle now passes through C and so must coincide with the original circle through A, C, and E. And so the radius of the original circle must be 1 (Figure 3).

Figure 1

Figure 2

Figure 3

There probably should be some more explicit details in justifying the translation does what I claim, such as for example, quadrilateral ABDE is a rectangle and so the sides AB and ED are vertical and coincide with the translation path.

Quantum Solution

Let's construct a triangle $A O E$ congruent to $B C D$ as shown in Figure 4. It follows from the condition of the problem that $A B C O$ and $E D C O$ are rhombuses. Indeed, in quadrilateral $A B D E, B D=A E$, and $A B=D E$. Thus it is a parallelogram, so $A B \| D E$ and $A E \| B D$. Now $C D$ and $O E$ make equal angles with the parallel lines $B D$ and $A E$, and so $O E \| C D$, so that $O E D C$ is a rhombus. It's clear that O is the center of the desired circle, and its radius equals 1.

Figure 4 Quantum Solution

It turns out the Quantum Magazine had an earlier problem that was a special case of this one, where all the sides of the quadrilateral are equal ([2]).

An equilateral triangle $A B E$ is constructed on the top of a square $A B C D$ (see the figure). Find the radius of the circle drawn through C, D, and E if the side length of the square is a. (A. Savin)

Quantum Solution. The answer is a, which becomes obvious after we shift the triangle downward by a (Figure 5).

So the solution offered in this version coincides with my solution above.

References

[1] "Brainteasers" B307 Quantum Magazine, Vol.11, No.2, National Science Teachers Assoc., Springer-Verlag, Nov-Dec 2000. p. 3
[2] "Brainteasers" B182 Quantum Magazine, Vol.7, No.1, National Science Teachers Assoc., Springer-Verlag, Sep-Oct 1996. p. 10

Figure 5
© 2021 James Stevenson

