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Jim Stevenson 

Here is a challenging problem from the Polish Mathematical 

Olympiads published in 1960 ([1]) 

22. Prove that the polynomial 

x
44

 + x
33

 + x
22

 + x
11

 + 1 

is divisible by the polynomial x
4
 + x

3
 + x

2
 + x + 1. 

My Solution 

Trying to divide the polynomials directly would be an 

enormous headache, so mathematicians being lazy, I sought a 

different route.  One idea would be to somehow use the fact that if 

x = α is a root of a polynomial equation p(x) = 0, then (x – α) is a 

factor of p(x).   

Let q(x) = x
44

 + x
33

 + x
22

 + x
11

 + 1 and p(x) = x
4
 + x

3
 + x

2
 + x + 1.  The second polynomial suggests 

an nth root of unity approach since  

(x – 1) p(x) = (x – 1) (x
4
 + x

3
 + x

2
 + x + 1) = x

5
 – 1. 

The roots of (x – 1) p(x) = 0 are therefore all the 5
th
 roots of unity, namely, 

xk = e
i2πk/5

 for k = 0, 1, 2, 3, 4. 

Then the four roots of p(x) = 0 are xk for k = 1, 2, 3, 4, and p(x) factors into 

p(x) = (x – x1) (x – x2) (x – x3) (x – x4). 

If we can show for k = 1, 2, 3, 4, the xk are roots of q(x) = 0, then p(x) divides q(x).  Now 

 0 = q(x) = x
44

 + x
33

 + x
22

 + x
11

 + 1 = (x
11

)
4
 + (x

11
)

3
 + (x

11
)

2
 + (x

11
) + 1 

and xk
11

 = xk
5
 xk

5
 xk = 1∙1∙ xk   for k = 1, 2, 3, 4. 

So  q(xk) = p(xk) = 0 for k = 1, 2, 3, 4, 

and we are done. 

Olympiads Solution 

Given the voluminous computations involved, I reproduce images of their solution rather than 

retype it.  See below p.2. 
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