The Pearl Necklace Problem

29 March 2021

Jim Stevenson

media.istockphoto.com

This problem comes from the Scottish Mathematical Council (SMC) Senior Mathematical Challenge ${ }^{1}$ of 2008 ([1]):

S2. In Tiffany's, a world famous jewellery store, there is a string necklace of 33 pearls. The middle one is the largest and most valuable. The pearls are arranged so that starting from one end, each pearl is worth $\$ 100$ more than the preceding one, up to [and including] the middle one; and starting from the other end, each pearl is worth $\$ 150$ more than the preceding one, up to [and including] the middle one. If the total value of the necklace is $\$ 65,000$ what is the value of the largest pearl?

I included the words in brackets to erase any ambiguity.

My Solution

Let V be the value of the most expensive, center pearl. Then the price of all the pearls in the necklace, working out on either side from the center one, is
\$65,000
$=(\mathrm{V}-16 \cdot 100)+(\mathrm{V}-15 \cdot 100)+\ldots+(\mathrm{V}-100)+\mathrm{V}+(\mathrm{V}-150)+\ldots+(\mathrm{V}-15 \cdot 150)+(\mathrm{V}-16 \cdot 150)$
$=16 \mathrm{~V}-(1+2+\ldots+15+16) 100+\mathrm{V}+16 \mathrm{~V}-(1+2+\ldots+15+16) 150$
$=33 \mathrm{~V}-(16 \cdot 17 / 2) 250$
$=33 \mathrm{~V}-34,000$
Therefore

$$
33 \mathrm{~V}=\$ 99,000 \Rightarrow \mathbf{V}=\$ 3,000
$$

SMC Solution

Here is the SMC solution ([2]).
Let $\$ m$ be the value of the first pearl at one end and $\$ n$ the value of the pearl at the other end. So, counting from one end, the value of the middle pearl is $m+16 \times 100$. Counting from the other end, the value of the middle pearl is $n+16 \times 150$. Thus $m+16 \times 100=n+16 \times 150$ so $m=n+800$.

The total value of the necklace is the value of the middle pearl plus the other pearls whose value is

$$
\begin{aligned}
m+(m & +100)+(m+2 \times 100)+\ldots+(m+15 \times 100)+n+(n+150)+(n+2 \times 150)+\ldots+(n+15 \times 150) \\
& =16(m+n)+(100+150)(1+2+3+\ldots+15) \\
& =16(m+n)+30000
\end{aligned}
$$

So the total value of the necklace is $16(m+n)+30000+m+1600$. Eliminating m we get

$$
16(2 n+800)+30000+n+800+1600=65000 .
$$

[^0]Solving this equation for n we get $33 n+45200=65000$ which gives $n=600$. Thus the value of the largest pearl is $600+16 \times 150=3000$.

References

[1] "Senior Division: Problems 1" Mathematical Challenge 2007-2008, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-2007-08-Q1.pdf)
[2] "Senior Division: Problems 1 Solutions" Mathematical Challenge 2007-2008, The Scottish Mathematical Council (http://www.wpr3.co.uk/MC-archive/S/S-2007-08-S1.pdf)
© 2021 James Stevenson

[^0]: ${ }^{1}$ http://www.wpr3.co.uk/MC/ [JOS: the Scottish version of the UKMT Challenge]

