## A Self-Characterizing Figure

21 April 2021

## Jim Stevenson



Futility Closet describes a result that is startling, amazing, and mysterious ([1]).

This is pretty: If you choose $n>1$ equally spaced points on a unit circle and connect one of them to each of the others, the product of the lengths of these chords equals $n$.

The Futility Closet posting includes an interactive display using Wolfram Technology by Jay Warendorff ([3]) that let's you select different $n$ and see the results. It also includes a reference to a paper that proves the result ([2]); only the paper uses residue theory from complex variables, which seems a bit over-kill, though slick, for such a problem. I found a simpler route.

## Solution

It is true that the problem immediately suggests looking at complex variables. If we denote the $n^{\text {th }}$ roots of unity $z_{k}=e^{2 \pi k i / n}$, where $k=0,1, \ldots, n-1$, by vectors from the center to the boundary of the unit circle (Figure 1), then the lengths of the differences $r_{k}=\left|z_{k}-z_{0}\right|$ for $k=1$, $2, \ldots, n-1$, represent the lengths of the chords of interest.

We will use the property of complex variables that the modulus (length) of the product of two complex numbers $u, w$ is the product of their moduli, that is,

$$
|u w|=|u||w|
$$

Having all the roots of unity and thinking about the differences between roots, we immediately think of the expansion

$$
0=z^{n}-1=\left(z-z_{n-1}\right)\left(z-z_{n-2}\right) \ldots\left(z-z_{0}\right)
$$



Figure $16^{\text {th }}$ Roots of Unity

Now

$$
z^{n}-1=(z-1)\left(z^{n-1}+z^{n-2}+\ldots z+1\right)
$$

Therefore, since $z_{0}=1$,

$$
z^{n-1}+z^{n-2}+\ldots z+1=\left(z-z_{n-1}\right)\left(z-z_{n-2}\right) \ldots\left(z-z_{1}\right)
$$

and

$$
n=\left|z_{0}^{n-1}+z_{0}^{n-2}+\ldots z_{0}^{1}+1\right|=\left|z_{0}-z_{n-1}\right|\left|z_{0}-z_{n-2}\right| \ldots\left|z_{0}-z_{1}\right|=r_{1} r_{2} r_{3} \ldots r_{n-1}
$$

which is what we wanted to show.
Again mysteries vanish when an underlying mathematical pattern is revealed.

## References

[1] "A Self-Characterizing Figure", Futility Closet, 17 March 2021 (https://www.futilitycloset.com/2021/03/17/a-self-characterizing-figure/)
[2] Andre P. Mazzoleni and Samuel Shan-Pu Shen, "The Product of Chord Lengths of a Circle," Mathematics Magazine 68:1 [February 1995], 59-60. (https://shen.sdsu.edu/pdf/mazz_matma_1995.pdf)
[3] Jay Warendorff, Demonstration with Wolfram Technology (https://demonstrations.wolfram.com/AProductOfChordLengthsInACircle/\#embed)

