Three Runners Puzzle

27 December 2019

Jim Stevenson

shutterstock.com-685354891

Here is another problem from Presh Talwalkar which he says is adapted from India's Civil Services Exam. ${ }^{1}$

There are three runners X, Y, and Z. Each runs with a different uniform speed in a 1000 meters race. If X gives Y a start of 50 meters, they will finish the race at the same time. If X gives Z a start of 69 meters, they will finish the race at the same time. Suppose Y and Z are in a [1000 meter] race. How much of a start should Y give to Z so they would finish the race at the same time?

Even though Talwalkar's original graphic showed all the runners in a 1000 meter race, it was not immediately clear to me from the wording that the race between Y and Z was also 1000 meters. But that was the case, so I made it explicit.

My Solution

Let $\mathrm{v}_{\mathrm{X}}, \mathrm{v}_{\mathrm{Y}}$, and v_{Z} be the speeds of X, Y, and Z respectively, and let t_{0} be the time X takes to run the 1000 meter race. Then, given their respective head starts, we have the three equations

$$
\begin{aligned}
& 1000=\mathrm{v}_{\mathrm{X}} \mathrm{t}_{0} \\
& 1000=50+\mathrm{v}_{\mathrm{Y}} \mathrm{t}_{0} \\
& 1000=69+\mathrm{v}_{\mathrm{Z}} \mathrm{t}_{0}
\end{aligned}
$$

This means the speeds of each runner are

$$
\mathrm{v}_{\mathrm{X}}=1000 / \mathrm{t}_{0}, \quad \mathrm{v}_{\mathrm{Y}}=950 / \mathrm{t}_{0} \text {, and } \mathrm{v}_{\mathrm{Z}}=931 / \mathrm{t}_{0}
$$

Now consider the 1000 meter race between Y and Z where Y gives Z the head start of d meters. Then

$$
\mathrm{v}_{\mathrm{Y}} \mathrm{t}_{1}=\mathrm{d}+\mathrm{v}_{\mathrm{Z}} \mathrm{t}_{1} \Rightarrow \mathrm{~d}=\left(\mathrm{v}_{\mathrm{Y}}-\mathrm{v}_{\mathrm{Z}}\right) \mathrm{t}_{1}
$$

where t_{1} is the time for Y and Z to run 1000 meters given Z 's head start. But

$$
v_{Y}-v_{Z}=19 / t_{0} \Rightarrow d=\left(v_{Y}-v_{Z}\right) t_{1}=19 t_{1} / t_{0}
$$

The relation between t_{0} and t_{1} is given by the respective times for running 1000 meters, namely

$$
\mathrm{v}_{\mathrm{X}} \mathrm{t}_{0}=1000=\mathrm{v}_{\mathrm{Y}} \mathrm{t}_{1} \Rightarrow \mathrm{t}_{1} / \mathrm{t}_{0}=\mathrm{v}_{\mathrm{X}} / \mathrm{v}_{\mathrm{Y}}=1000 / 950
$$

Therefore,

$$
\mathrm{d}=19 \cdot 1000 / 950=20 \text { meters }
$$

[^0]
Talwalkar's Solution

Three Runners Puzzle

You might guess the answer is $69-50=19$. That is close but it's not correct! The reason is Y needs to give Z a 19 m start if they were running a 950 m race. But we need the answer for a 1000 m race. We can use the formula distance $=($ rate $)($ time $)$, which is equivalently time $=($ distance $) /($ rate $)$. Use lower-case letters to indicate each runner's speed (rate of running).
X and Y run the same time when X runs 1000 meters and Y runs $1000-50=950$ meters. Thus we have the equation:

$$
\begin{gathered}
1000 / x=950 / y \\
y=0.95 x
\end{gathered}
$$

Y is 95% the speed of X .
X and Z run the same time when X runs 1000 meters and Z runs $1000-69=931$ meters. Thus we have the equation:

$$
\begin{gathered}
1000 / x=931 / \mathrm{z} \\
Z=0.931 x
\end{gathered}
$$

Z is 93.1% the speed of X .
Both equations equal $1000 / x$, so we can equate the right hand sides.

$$
950 / y=931 / z
$$

Now multiply both sides by 1000/950 to solve for the time it takes y to run 1000 meters. This gives:

$$
\begin{gathered}
1000 / y=(931 / z)(1000 / 950) \\
1000 / y=980 / z \\
z=.98 y
\end{gathered}
$$

This means Y completes 1000 meters in the time Z would complete 980 meters (or Z is 98% the speed of Y). Thus Y needs to give Z a 20 meter start.

Comment. The graphic above may be misleading. You need to be careful about the phrase "same time". "Same time" in the first two races is the time X took to run a 1000 yard race, which I called t_{0} above. "Same time" in the third race in the graphic is the time Y takes to run the 1000 yard race, which I called t_{1}. So $t_{0} \neq t_{1}$ in general.
© 2019 James Stevenson

[^0]: ${ }^{1}$ https://mindyourdecisions.com/blog/2019/12/26/three-runners-puzzle-from-indias-civil-services-exam

