Square Deal

19 June 2015
Jim Stevenson

Here is a simple Futility Closet problem from 2014 ([1]).
This unit square is divided into four regions by a diagonal and a line that connects a vertex to the midpoint of an opposite side. What are the areas of the four regions?

My Solution

The unit square has area 1 . Then we have the following relationships for the areas inside the square:

$$
\begin{align*}
& \mathbf{a}+\mathbf{b}=1 / 4 \tag{1}\\
& \mathbf{b}+\mathbf{c}=1 / 2 \tag{2}\\
& \mathbf{a}+\mathbf{d}=1 / 2 \tag{3}
\end{align*}
$$

We need one more relationship. Notice that the triangle a is similar to triangle \mathbf{c}, since they have equal angles. But the base of a is $1 / 2$ the base of \mathbf{c}, so that all dimensions of \mathbf{a} are $1 / 2$ of \mathbf{c}. This means the area $\mathbf{a}=1 / 4 \mathbf{C}$ or

$$
\begin{equation*}
\mathbf{c}=4 \mathbf{a} . \tag{4}
\end{equation*}
$$

Therefore substituting equation (4) into equation (2) and subtracting equation (1) from equation (2) yields $\mathbf{a}=1 / 12$. Therefore $\mathbf{c}=1 / 3, \mathbf{b}=1 / 6$, and $\mathbf{d}=5 / 12$. My solution (worked out before looking at Futility Closet's) agrees with Futility Closet's solution.

Futility Closet Solution

$\mathrm{a}+\mathrm{b}=1 / 4, \mathrm{~b}+\mathrm{c}=1 / 2$, and $\mathrm{a}+\mathrm{d}=1 / 2$. Triangles a and c are similar, and c has twice the linear dimensions of a , so $\mathrm{c}=4 \mathrm{a}$. That's enough to work out the areas: $\mathrm{a}=1 / 12, \mathrm{~b}=1 / 6, \mathrm{c}=1 / 3$, and $\mathrm{d}=$ 5/12.

From University of Toronto mathematician Ed Barbeau's After Math (1995).

References

[1] "Square Deal" Futility Closet, 15 December 2014
(https://www.futilitycloset.com/2014/12/15/square-deal-4/, retrieved 6/19/2015)
© 2019 James Stevenson

