Serious Series

17 December 2019
Jim Stevenson

The following problem comes from a 1961 exam set collected by Ed Barbeau of the University of Toronto. The discontinued exams (by 2003) were for $5^{\text {th }}$ year Ontario high school students seeking entrance and scholarships for the second year at a university ([1]).

If s_{n} denotes the sum of the first n natural numbers, find the sum of the infinite series

$$
\frac{s_{1}}{1}+\frac{s_{2}}{2}+\frac{s_{3}}{4}+\frac{s_{4}}{8}+\ldots
$$

Unfortunately, the "Grade XIII" exam problem sets were not provided with answers, so I have no confirmation for my result. There may be a cunning way to manipulate the series to get a solution, but I could not see it off-hand. So I employed my tried and true power series approach to get my answer. It turned out to be power series manipulations on steroids, so there must be a simpler solution that does not use calculus. I assume the exams were timed exams, so I am not sure how a harried student could come up with a quick solution. I would appreciate any insights into this.

My Solution

The first step was to convert s_{n} into its usual sum:

$$
s_{n}=1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

Then the desired series becomes

$$
\sum_{n=1}^{\infty} \frac{s_{n}}{2^{n-1}}=\sum_{n=1}^{\infty} \frac{n(n+1)}{2^{n}}
$$

Now for the usual trick of converting this to a power series

$$
f(x)=\sum_{n=1}^{\infty} n(n+1) x^{n}
$$

where we want to find $f(1 / 2)$.
The $n+1$ factor reminded me of integration, so I integrated the power series term-by-term:

$$
\left.F(x)=\int_{0}^{x} f(t) d t=\sum_{n=1}^{\infty} \int_{0}^{x} n(n+1) t^{n} d t=\sum_{n=1}^{\infty} n(n+1) \frac{t^{n+1}}{n+1}\right]_{0}^{x}=\sum_{n=1}^{\infty} n x^{n+1}=x^{2} \sum_{n=1}^{\infty} n x^{n-1}=x^{2} g^{\prime}(x)
$$

where $g^{\prime}(x)$ is the derivative of our old friend the geometric series

$$
g(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

So

$$
f(x)=F^{\prime}(x)=2 x g^{\prime}(x)+x^{2} g^{\prime \prime}(x)
$$

where

$$
g^{\prime}(x)=\frac{1}{(1-x)^{2}} \text { and } g^{\prime \prime}(x)=\frac{2}{(1-x)^{3}}
$$

so that

$$
f(x)=\frac{2 x}{(1-x)^{2}}+\frac{2 x^{2}}{(1-x)^{3}}=\frac{2 x}{(1-x)^{3}}
$$

Therefore,

$$
f\left(\frac{1}{2}\right)=8=\sum_{n=1}^{\infty} \frac{s_{n}}{2^{n-1}}
$$

Amazing!

References

[1] "Grade XIII Problems", Annual Examinations, Department of Education, Ontario, 1961. To be taken only by candidates writing for certain University Scholarships involving Mathematics. (http://www.math.utoronto.ca/barbeau/ontprob1961.pdf, retrieved 12/15/2019)

