New Years Sum

12 February 2020
Jim Stevenson

clipartportal.com

Here is another problem from the 2020 Math Calendar to stimulate your mind ([1]).

$$
9+6+4+\frac{8}{3}+\frac{16}{9}+\ldots=?
$$

Remember that the answers to Math Calendar problems must all be whole numbers representing days of the month.

Solution

First, write out the series in terms of powers of 2 and 3.

$$
S=3^{2}+2 \cdot 3+2^{2}+\frac{2^{3}}{3^{1}}+\frac{2^{4}}{3^{2}}+\ldots+\frac{2^{n+2}}{3^{n}}+\ldots
$$

Complete the pattern in the first three terms.

$$
S=\frac{2^{0}}{3^{-2}}+\frac{2^{1}}{3^{-1}}+\frac{2^{2}}{3^{0}}+\frac{2^{3}}{3^{1}}+\frac{2^{4}}{3^{2}}+\ldots+\frac{2^{n+2}}{3^{n}}+\ldots
$$

Factor out 2^{2} and then $(2 / 3)^{-2}$ to reveal a geometric series.

$$
\begin{aligned}
& S=2^{2} \frac{2^{-2}}{3^{-2}}+2^{2} \frac{2^{-1}}{3^{-1}}+2^{2} \frac{2^{0}}{3^{0}}+2^{2} \frac{2^{1}}{3^{1}}+2^{2} \frac{2^{2}}{3^{2}}+\ldots+2^{2}\left(\frac{2}{3}\right)^{n}+\ldots \\
& S=2^{2} \frac{2^{-2}}{3^{-2}}\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\ldots+\left(\frac{2}{3}\right)^{n+2}+\ldots\right)
\end{aligned}
$$

Thus we have the answer.

$$
S=9 \frac{1}{1-\frac{2}{3}}=27
$$

References

[1] Rapoport, Rebecca and Dean Chung, Mathematics 2020: Your Daily epsilon of Math, Point Rock, Quarto Publishing Group, New York, 2020. January

$$
\text { © } 2020 \text { James Stevenson }
$$

