The Train Buffs

9 March 2019
Jim Stevenson

Here is another train puzzle, this time from J. A. H. Hunter's Entertaining Mathematical Teasers ([1] p.46):

160 The Train Buffs

Mike had made the [train] trip many times. "That's the morning express from Tulla we're passing," he said. "It left Tulla one hour after we pulled out from Brent, but we're just 25% faster."
"That's right, and we're also passing Cove, two-thirds the distance between Brent and Tulla," Martin agreed. "So we're both right on schedule."

Obviously a couple of train buffs! Assuming constant speeds and no stops, how long would it be before they reached Tulla?

Solution

We have the Tulla express train (T) traveling at a speed v a distance $1 / 3$ in t hours. Thus

$$
v t=1 / 3 .
$$

Then we have the Brent train (B) traveling at a speed (5/4) v a distance $2 / 3$ in $1+t$ hours to meet the Tulla train at Cove. Thus

$$
(5 / 4) v(1+t)=2 / 3
$$

Substituting for t in the two equations yields

$$
\begin{gathered}
(5 / 4) v(1+1 / 3 v)=2 / 3 \\
3 v+1=8 / 5 \text { or } v=1 / 5
\end{gathered}
$$

Problem Statement

Therefore the time t^{\prime} for the Brent train to go from Cove to Tulla is (5/4) v $t^{\prime}=1 / 3$ or $t^{\prime}=4 / 3$ hour or 1 hr 20 min .

References

[1] Hunter, J. A. H. (James Alston Hope), Entertaining Mathematical Teasers And How To Solve Them, Dover Publications, 1983

