Magic Hexagons

27 November 2019

Jim Stevenson

This is truly an amazing result from Five Hundred Mathematical Challenges ([1]).

Problem 119. Two unequal regular hexagons ABCDEF and CGHJKL touch each other at C and are so situated that F, C, and J are collinear. Show that
(i) the circumcircle of BCG bisects FJ (at O say);
(ii) $\triangle \mathrm{BOG}$ is equilateral.

I wonder how anyone ever discovered this.

My Solution

Again it appears my approach was more complicated, though it was straight-forward.

Figure 1 My Solution
If we let a be the length of the side of the small hexagon and b the length of the side of the large hexagon, and if we let C be the origin of a coordinate system (Figure 1), then the other two points on the circumcircle B and G have coordinates $(-a / 2, a \sqrt{3} / 2)$ and $(b / 2, b \sqrt{3} / 2)$. Since the points C and O lie on the horizontal line FJ, the perpendicular bisector of the line joining them will pass vertically through the center of the circle given by coordinates ($\mathrm{x}_{0}, \mathrm{y}_{0}$). Therefore O lies a distance $2 \mathrm{x}_{0}$ from C.

Three points are sufficient to determine a circle and therefore its equation. We use the centerradius form, which gives the locus as all points (x, y) a distance r from the center $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$:

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

Substituting the coordinates for C, B, and G gives us three equations:
$\mathrm{C}(0,0)$:

$$
\text { B }(-\mathrm{a} / 2, \mathrm{a} \sqrt{3} / 2):
$$

$$
\begin{gathered}
x_{0}{ }^{2}+y_{0}{ }^{2}=r^{2} \\
\left(-a / 2-x_{0}\right)^{2}+\left(\mathrm{a} \sqrt{ } 3 / 2-y_{0}\right)^{2}=r^{2} \\
\left(\mathrm{~b} / 2-\mathrm{x}_{0}\right)^{2}+\left(\mathrm{b} \sqrt{3} / 2-\mathrm{y}_{0}\right)^{2}=\mathrm{r}^{2}
\end{gathered}
$$

G (b/2, b/ $3 / 2$):
This yields the pair of equations

Therefore,

$$
\begin{gathered}
-x_{0}+\sqrt{ } 3 y_{0}=a \\
x_{0}+\sqrt{ } 3 y_{0}=b \\
2 x_{0}=b-a
\end{gathered}
$$

Now

$$
\mathrm{FJ}=\mathrm{FC}+\mathrm{CJ}=2 \mathrm{a}+2 \mathrm{~b}=2(\mathrm{a}+\mathrm{b})
$$

and

$$
\mathrm{FO}=\mathrm{FC}+2 \mathrm{x}_{0}=2 \mathrm{a}+(\mathrm{b}-\mathrm{a})=\mathrm{a}+\mathrm{b}=\mathrm{FJ} / 2
$$

Hence, O is the midpoint of the line FJ, proving (i).
We now compute the lengths of the edges of the triangle BG, BO, and OG.

$$
\begin{gathered}
\mathrm{BG}^{2}=(\mathrm{b} / 2+\mathrm{a} / 2)^{2}+(\mathrm{b} \sqrt{3} / 2-\mathrm{a} \sqrt{3} / 2)^{2}=\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2} \\
\mathrm{BO}^{2}=((\mathrm{b}-\mathrm{a})+\mathrm{a} / 2)^{2}+(-\mathrm{a} \sqrt{3} / 2)^{2}=\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2} \\
\mathrm{OG}^{2}=(\mathrm{b} / 2-(\mathrm{b}-\mathrm{a}))^{2}+(\mathrm{b} \sqrt{3} / 2)^{2}=\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2}
\end{gathered}
$$

So all three sides are equal, making the triangle BGO equilateral, proving (ii).
Notice that if the hexagons are the same size $(a=b)$, then clearly O bisects FJ and the lengths BG, BO, and OG all reduce to a, as they should.

500 Math Challenges Solution

Naturally, they had a simpler solution. It is purely plane geometry rather than analytic geometry like my approach, and quite slick. (I have added my own diagrams for clarity.)

Since $\angle \mathrm{BCG}=\angle \mathrm{GCO}=60^{\circ}$ and $\mathrm{B}, \mathrm{C}, \mathrm{O}$, G are concyclic, it follows that $\angle \mathrm{BOG}=\angle \mathrm{GBO}=60^{\circ}$ and hence triangle BGO is equilateral. ${ }^{1}$

Let X be the center of the larger hexagon. A counterclockwise rotation of 60° about G maps B and C onto O and X respectively. Hence, $\mathrm{BC}=\mathrm{OX}$, and

$$
\mathrm{FO}=\mathrm{FC}+\mathrm{CO}=2 \mathrm{BC}+\mathrm{CO}=2 \mathrm{OX}+\mathrm{CO}=\mathrm{OX}+\mathrm{CX}=\mathrm{OJ} .
$$

[^0]
References

[1] Barbeau, Edward J., Murray S. Klamkin, William O. J. Moser, Five Hundred Mathematical Challenges, Spectrum Series, Mathematical Association of America, Washington D.C, 1995
© 2019 James Stevenson

[^0]: 1 JOS: $\angle \mathrm{BOG}=\angle \mathrm{GBO}=60^{\circ}$ since $\angle \mathrm{BOG}=\angle \mathrm{BCG}$ and $\angle \mathrm{GBO}=\angle \mathrm{GCO}$ because they subtend the same arcs of the circle.

