Flipping Parabolas

3 September 2019

Jim Stevenson

This is a stimulating problem from the UKMT Senior Math Challenge for 2017. The additional problem "for investigation" is particularly challenging. (I have edited the problem slightly for clarity.)

The parabola with equation $y=x^{2}$ is reflected about the line with equation $y=x+2$. Which of the following is the equation of the reflected parabola?
A $x=y^{2}+4 y+2$
B $x=y^{2}+4 y-2$
C $x=y^{2}-4 y+2$
D $x=y^{2}-4 y-2$
E $x=y^{2}+2$

For investigation: Find the coordinates of the point that is obtained when the point with coordinates (x, y) is reflected about the line with equation $y=m x+b$.

Problem Solution

I knew how to reflect a figure about the 45° line, just swap the coordinates: $(x, y) \rightarrow(y, x)$. So the idea was to translate the figures so that the line $y=x+2$ became $y^{\prime}=x^{\prime}$, flip the parabola about the 45° line, and translate the resulting figures back (Figure 1).

Figure 1 Transformations to Solve Problem
Define

$$
T:\binom{x}{y} \rightarrow\binom{x}{y-2}=\binom{x^{\prime}}{y^{\prime}}, \quad F:\binom{x^{\prime}}{y^{\prime}} \rightarrow\binom{y^{\prime}}{x^{\prime}}, \quad \text { and } \quad T^{-1}:\binom{x^{\prime}}{y^{\prime}} \rightarrow\binom{x^{\prime}}{y^{\prime}+2}=\binom{x}{y}
$$

Then composing transformations, we have $\mathrm{F}^{\prime}=\mathrm{T}^{-1} \circ \mathrm{~F} \circ \mathrm{~T}:(x, y) \rightarrow(y-2, x+2)$, that is,

$$
\binom{x}{y} \xrightarrow{\mathbf{T}}\binom{x}{y-2} \xrightarrow{\mathbf{F}}\binom{y-2}{x} \xrightarrow{\mathbf{T}^{-1}}\binom{y-2}{x+2}
$$

So flipping $y=x^{2}$ about $y=x+2$ yields

$$
(x+2)=(y-2)^{2} \text { or } x=y^{2}-4 y+2(\text { Answer C) }
$$

"For Investigation" Solution

I had never considered this before, so I found the question quite interesting.
Translation. The translation and its inverse were simple: $\mathrm{T}:(x, y) \rightarrow(x, y-b)$ and $\mathrm{T}^{-1}:(x, y) \rightarrow$ $(x, y+b)$. The challenge was determining the flip F about the resulting line $y=m x$. I thought a vector approach might be easiest. Hopefully Seniors in today's high schools are augmenting their plane geometry with vector geometry, and even some linear algebra with linear transformations and matrices.

Flip (Reflection). Figure 2 illustrates the idea. Choose a point (x, y) to be flipped, draw a vector \mathbf{v} from the origin to (x, y), and then project \mathbf{v} perpendicularly onto the line $y=m x$. Subtract the projection from \mathbf{v} to get a vector perpendicular to y $=m x$ and of length the distance of (x, y) from the line $y=m x$. Take the negative of this vector and add it to the projection of \mathbf{v} to get the vector \mathbf{w} to the desired flipped point (x^{\prime}, y^{\prime}). Unfortunately, carrying out the implied computations gets a bit

Figure 2 Flip About $y=m x$ hairy.

Let \mathbf{u} be the unit vector along $y=m x$. Then
and

$$
\begin{gathered}
\mathbf{u}=\frac{1}{\sqrt{1+m^{2}}}(\mathbf{i}+m \mathbf{j}) \\
\mathbf{v}=x \mathbf{i}+y \mathbf{j}
\end{gathered}
$$

therefore, the projection of \mathbf{v} onto \mathbf{u} is given by

$$
(\mathbf{v} \cdot \mathbf{u}) \mathbf{u}=\frac{1}{1+m^{2}}\left[(x+m y) \mathbf{i}+\left(m x+m^{2} y\right) \mathbf{j}\right]
$$

Then $\mathbf{w}=2(\mathbf{v} \cdot \mathbf{u}) \mathbf{u}-\mathbf{v}$ becomes
or

$$
\begin{gather*}
\mathbf{w}=\left[\frac{2(x+m y)}{1+m^{2}}-x\right] \mathbf{i}+\left[\frac{2\left(m x+m^{2} y\right)}{1+m^{2}}-y\right] \mathbf{j} \\
\mathbf{w}=\frac{1}{1+m^{2}}\left[\left(2 m y-\left(m^{2}-1\right) x\right) \mathbf{i}+\left(2 m x+\left(m^{2}-1\right) y\right) \mathbf{j}\right] \tag{1}
\end{gather*}
$$

If $m=1$, then $\mathbf{w}=y \mathbf{i}+x \mathbf{j}$, which is the original flip around the 45° line $\mathrm{F}:(x, y) \rightarrow(y, x)$.
An easier way to see the general expression for F would be via matrices:

$$
F\binom{x}{y}=\frac{1}{1+m^{2}}\left(\begin{array}{cc}
-\left(m^{2}-1\right) & 2 m \tag{2}\\
2 m & \left(m^{2}-1\right)
\end{array}\right)\binom{x}{y}
$$

Then for $m=1, \mathrm{~F}$ becomes

$$
F\binom{x}{y}=\frac{1}{2}\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right)\binom{x}{y}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{y}{x}
$$

as before. If $m=2$ and $(x, y)=(5,5)$, then

$$
F\binom{5}{5}=\frac{1}{5}\left(\begin{array}{cc}
-3 & 4 \\
4 & 3
\end{array}\right)\binom{5}{5}=\left(\begin{array}{cc}
-3 & 4 \\
4 & 3
\end{array}\right)\binom{1}{1}=\binom{1}{7}
$$

So F: $(5,5) \rightarrow(1,7)$. (This is the example in Figure 2.)

$$
\text { © } 2019 \text { James Stevenson }
$$

