# Circular Rendezvous Mystery 

25 August 2019

Jim Stevenson

Here is yet another surprising result from Colin Hughes at Maths Challenge. ${ }^{1}$

## Problem

It can be shown that a unique circle passes through three given points. In triangle ABC three points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and $\mathrm{C}^{\prime}$ lie on the edges opposite $\mathrm{A}, \mathrm{B}$, and C respectively. Given that the circle $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ intersects circle $\mathrm{BA}^{\prime} \mathrm{C}^{\prime}$ inside the triangle at point P , prove that circle CA'B' will be concurrent with P.

## My Solution

I approached the problem a bit differently. Rather than prove a circle CA'B' goes through P, I prove equivalently that a circle PA'B' goes through C (Figure 1). I have to admit it took me a while to arrive at the final version of my proof. My original approach had some complicated expressions using various angles, and then I realized I had not used my assumption that the circle
 went through P. Once I involved P, all the complications faded away and the result became clear.

From the original triangle we have angles $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$. Furthermore, from Figure 1 angles $A=\alpha / 2, B=\beta / 2$, and $D=\delta / 2$. Then from Figure 2 we have

$$
\begin{aligned}
360^{\circ} & =\alpha^{\prime}+\beta^{\prime}+\delta^{\prime}=\left(360^{\circ}-\alpha\right) / 2+\left(360^{\circ}-\beta\right) / 2+\left(360^{\circ}-\delta\right) / 2 \\
& =\left(180^{\circ}-\mathrm{A}\right)+\left(180^{\circ}-\mathrm{B}\right)+\left(180^{\circ}-\mathrm{D}\right)
\end{aligned}
$$



Figure 1


Figure 2

[^0]Therefore

$$
\mathrm{A}+\mathrm{B}+\mathrm{D}=180^{\circ}
$$

and so angles

$$
\mathrm{D}=\mathrm{C}
$$

which means the circle PA'B' must pass through the vertex C .

## Maths Challenge Solution

Here is the Maths Challenge solution which is basically what I did, though worded differently.
Consider the following diagram (Figure 3). As $\mathrm{AB}^{\prime} \mathrm{PC}^{\prime}$ is a cyclic quadrilateral ${ }^{2}$

$$
\text { angle A + angle } \mathrm{B}^{\prime} \mathrm{PC}^{\prime}=180 \text { degrees. }{ }^{3}
$$

Similarly $\mathrm{A}^{\prime} \mathrm{PC}{ }^{\prime} \mathrm{B}$ is a cyclic quadrilateral so

$$
\text { angle B }+ \text { angle } A^{\prime} \mathrm{PC}^{\prime}=180 \text { degrees. }{ }^{4}
$$

Therefore

$$
\begin{aligned}
\text { angle } \mathrm{A}+\text { angle } \mathrm{B} & =360-\left(\text { angle } \mathrm{B}^{\prime} \mathrm{PC}^{\prime}+\text { angle } \mathrm{A}^{\prime} \mathrm{PC} '^{\prime}\right) \\
& =\text { angle } \mathrm{A}^{\prime} \mathrm{PB}{ }^{\prime} .
\end{aligned}
$$

However, in triangle ABC ,

$$
\text { angle A + angle B = } 180 \text { - angle C. }
$$



Figure 3

Hence

$$
\text { angle A'PB' = } 180-\text { angle C }{ }^{5}
$$

and we show that $\mathrm{CA}^{\prime} \mathrm{PB}{ }^{\prime}$ is a cyclic quadrilateral and the circle passing through $\mathrm{C}, \mathrm{A}^{\prime}$, and $\mathrm{B}^{\prime}$ is concurrent at P .

This result is known as Miquel's theorem and remains true if the common point is outside the triangle...
© 2019 James Stevenson

[^1]
[^0]:    ${ }^{1}$ "Concurrent Circles in a Triangle" Problem ID: 322 (14 Apr 2007) Difficulty: 3 Star at mathschallenge.net. "A three-star problem: a good knowledge of school mathematics and/or some aspects of proof will be required." (https://mathschallenge.net/problems/pdfs/mathschallenge_3_star.pdf)

[^1]:    ${ }^{2}$ JOS: (Wikipedia) "In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle."
    ${ }^{3}$ JOS: This is my result: $\alpha^{\prime}=180-$ A.
    ${ }^{4}$ JOS: This is my result: $\beta^{\prime}=180-$ B.
    5 JOS: The rest of the proof is essentially what I did as well.

