Circular Rendezvous Mystery

25 August 2019

Jim Stevenson

Here is yet another surprising result from Colin Hughes at *Maths Challenge*.¹

Problem

It can be shown that a unique circle passes through three given points. In triangle ABC three points A', B', and C' lie on the edges opposite A, B, and C respectively. Given that the circle AB'C' intersects circle BA'C' inside the triangle at point P, prove that circle CA'B' will be concurrent with P.

My Solution

I approached the problem a bit differently. Rather than prove a circle CA'B' goes through P, I prove equivalently that a circle PA'B' goes through C (Figure 1). I have to admit it took me a while to arrive at the final version of my proof. My original approach had some complicated expressions using various angles, and then I realized I had not used my assumption that the circle went through P. Once I involved P, all the complications faded away and the result became clear.

From the original triangle we have angles A + B + C = 180°. Furthermore, from Figure 1 angles A = $\alpha/2$, B = $\beta/2$, and D = $\delta/2$. Then from Figure 2 we have

$$360^{\circ} = \alpha' + \beta' + \delta' = (360^{\circ} - \alpha)/2 + (360^{\circ} - \beta)/2 + (360^{\circ} - \delta)/2$$

$$= (180^{\circ} - A) + (180^{\circ} - B) + (180^{\circ} - D)$$

¹ "Concurrent Circles in a Triangle" Problem ID: 322 (14 Apr 2007) Difficulty: 3 Star at mathschallenge.net. "A three-star problem: a good knowledge of school mathematics and/or some aspects of proof will be required." (https://mathschallenge.net/problems/pdfs/mathschallenge_3_star.pdf)

Therefore

$$A + B + D = 180^{\circ}$$

and so angles

D = C

which means the circle PA'B' must pass through the vertex C.

Maths Challenge Solution

Here is the Maths Challenge solution which is basically what I did, though worded differently.

Consider the following diagram (Figure 3). As AB'PC' is a cyclic quadrilateral²

angle A + angle B'PC' = 180 degrees.^3

Similarly A'PC'B is a cyclic quadrilateral so

angle B + angle A'PC' = 180 degrees.^4

Therefore

```
angle A + angle B = 360 - (angle B'PC' + angle A'PC')
```

= angle A'PB'.

However, in triangle ABC,

angle A + angle B = 180 - angle C.

Hence

angle A'PB' = $180 - \text{angle C}^5$

This result is known as Miquel's theorem and remains true if the common point is outside the triangle...

© 2019 James Stevenson

³ JOS: This is my result: $\alpha' = 180 - A$.

⁴ JOS: This is my result: $\beta' = 180 - B$.

⁵ JOS: The rest of the proof is essentially what I did as well.