Impossible Car Riddle

31 July 2019
Jim Stevenson

This is another intriguing problem from Presh Talwalkar.
(https://mindyourdecisions.com/blog/2019/07/29/a-seemingly-impossible-car-riddle/)

A Seemingly Impossible Car Riddle

Posted July 29, 2019 By Presh Talwalkar.
A car travels 75 miles per hour (mph) downhill, 60 mph on flat roads, and 50 mph uphill. It takes 3 hours to go from town A to B, and it takes 3 hours and 30 minutes for return journey by the same route. What is the distance in miles between towns A and B?

A similar (and perhaps easier) problem was asked in a US Math Olympiad qualifying test (2017 AMC 10A, problem 9).

My Solution

Figure 1 shows the problem statement where for the trip from A to B we have collected all the down-slopes into one total distance d_{1}, all the up-slopes in one total distance d_{3}, and all the horizontal sections in one total distance d_{2}. Thus the total distance between A and B is

$$
\mathrm{D}=\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3}
$$

We have also labeled the distances with the speeds in mph corresponding to whether the car is driving up a

Figure 1 Problem Statement slope, down a slope, or horizontally. And we have shown the time to drive from A to B is 3 hours and from B to A is 3.5 hours. With these speeds, distances, and times we get the following two equations,
for A to B :

$$
\begin{gather*}
3=\mathrm{d}_{1} / 75+\mathrm{d}_{2} / 60+\mathrm{d}_{3} / 50 \tag{1}\\
3.5=\mathrm{d}_{1} / 50+\mathrm{d}_{2} / 60+\mathrm{d}_{3} / 75 \tag{2}
\end{gather*}
$$

Subtracting the first from the second yields

$$
1 / 2=(1 / 50-1 / 75)\left(d_{1}-d_{3}\right)
$$

or, multiplying both sides by 150 ,

$$
75=\mathrm{d}_{1}-\mathrm{d}_{3}
$$

This result is shown in Figure 2. This distance was driven in 1 hour on the trip from A to B ($75 \mathrm{mi} / 75 \mathrm{mph}=1 \mathrm{hr}$) and 1.5 hours on the return trip from B to A $(75 \mathrm{mi} / 50 \mathrm{mph}=1.5 \mathrm{hr}) . \quad$ This section takes care of the discrepancy in time between the trip from A to B and the

Figure 2 First Step in Solution
return. Therefore the remaining parts of the trips both take 2 hours. So we get the equation

$$
2=\mathrm{d}_{3} / 50+\mathrm{d}_{2} / 60+\mathrm{d}_{3} / 75=\mathrm{d}_{3} / 30+\mathrm{d}_{2} / 60=\left(2 \mathrm{~d}_{3}+\mathrm{d}_{2}\right) / 60
$$

or

$$
120=2 \mathrm{~d}_{3}+\mathrm{d}_{2}
$$

Thus

$$
\mathrm{D}=\mathrm{d}_{1}+\mathrm{d}_{2}+\mathrm{d}_{3}=\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)+2 \mathrm{~d}_{2}+\mathrm{d}_{3}=75+120=195 \text { miles. }
$$

Talwalkar Solution

Talwalkar set up the problem the same way, but he added the two equations (1) and (2) rather than subtracted. I should have seen the symmetries and done the same, but I didn't. In any case, adding the equations and noting that $1 / 50+1 / 75=1 / 30$ as we saw above yields

$$
6.5=\mathrm{d}_{1} / 30+\mathrm{d}_{2} / 30+\mathrm{d}_{3} / 30=\mathrm{D} / 30
$$

(This nice clean result was certainly not evident to me at first, which is why I subtracted, trying to eliminate one of the variables, namely d_{2}.) Thus

$$
\mathrm{D}=195 \text { miles } .
$$

Talwalkar also provided two sources:

1. Nick's mathematical puzzle, number 75 , http://www.qbyte.org/puzzles/p075s.html
2. AoPS 2017 AMC 10A, problem 9 (the AMC is a qualifying test to the US Olympiad) https://artofproblemsolving.com/wiki/index.php/2017_AMC_10A_Problems/Problem_9
© 2019 James Stevenson
