Consecutive Product Square

22 July 2019

Jim Stevenson

This problem from Colin Hughes at *Maths Challenge*¹ is a most surprising result that takes a bit of tinkering to solve.

Problem

We can see that $3 \times 4 \times 5 \times 6 = 360 = 19^2 - 1$. Prove that the product of four consecutive integers is always one less than a perfect square.

The result is so mysterious at first that you begin to understand why the ancient Pythagoreans had a mystical relationship with mathematics.

Solution

Rather than just write down the answer, I thought it might be interesting to show how I figured it out. Basically, it was by considering several examples and seeing patterns.

n(n-1)(n-2)(n-3)	$m^2 - 1$	$m_n - m_{n-1}$	m	m
$4 \cdot 3 \cdot 2 \cdot 1 = 24$	$= 5^2 - 1$		$2 \cdot 2 + 1 = 2 \cdot 2 + 1 \cdot 2 - 1$	$2(3\cdot 2/2) - 1$
$5 \cdot 4 \cdot 3 \cdot 2 = 120$	$= 11^2 - 1$	$6 = 3 \cdot 2$	$3 \cdot 2 + 2 \cdot 2 + 1 \cdot 2 - 1$	$2(4\cdot 3/2) - 1$
$6 \cdot 5 \cdot 4 \cdot 3 = 360$	$= 19^2 - 1$	$8 = 4 \cdot 2$	$4 \cdot 2 + 3 \cdot 2 + 2 \cdot 2 + 1 \cdot 2 - 1$	$2(5\cdot 4/2) - 1$
$7 \cdot 6 \cdot 5 \cdot 4 = 840$	$= 29^2 - 1$	$10 = 5 \cdot 2$	$5 \cdot 2 + 4 \cdot 2 + 3 \cdot 2 + 2 \cdot 2 + 1 \cdot 2 - 1$	$2(6\cdot 5/2) - 1$
$8 \cdot 7 \cdot 6 \cdot 5 = 1680$	$=41^2 - 1$	$12 = 6 \cdot 2$	$6 \cdot 2 + 5 \cdot 2 + 4 \cdot 2 + 3 \cdot 2 + 2 \cdot 2 + 1 \cdot 2 - 1$	2(7.6/2) – 1

From this I conjectured that the pattern was

 $n(n-1)(n-2)(n-3) = [(n-1)(n-2) - 1]^{2} - 1$

So I expanded the RHS to see if it equaled the LHS.

$$[(n-1)(n-2) - 1]^{2} - 1 = ([(n-1)(n-2) - 1] - 1) ([(n-1)(n-2) - 1] + 1)$$
$$= [n^{2} - 3n + 2 - 2][(n-1)(n-2)]$$
$$= n(n-3)(n-1)(n-2)$$

Confirmed.

Maths Challenge Solution

Let

$$Q = n(n + 1)(n + 2)(n + 3) + 1 = n4 + 6n3 + 11n2 + 6n + 1.$$

If Q is square, it must be of the form, $(n^2 + an + 1)^2$.

Expanding

¹ "Consecutive Product Square" Problem ID: 185 (01 Nov 2004) Difficulty: 3 Star at mathschallenge.net. "A three-star problem: a good knowledge of school mathematics and/or some aspects of proof will be required." (https://mathschallenge.net/problems/pdfs/mathschallenge_3_star.pdf)

 $(n^2 + an + 1)^2 = n^4 + 2an^3 + (a^2+2)n^2 + 2an + 1,$ and comparing coefficients, $2a = 6 \Rightarrow a = 3$; checking: $a^2+2 = 11$. Therefore, $Q = (n^2 + 3n + 1)^2.$

Hence, the product of four consecutive integers is always one less than a perfect square.

© 2019 James Stevenson