Consecutive Product Square

22 July 2019
Jim Stevenson

This problem from Colin Hughes at Maths Challenge ${ }^{1}$ is a most surprising result that takes a bit of tinkering to solve.

Problem

We can see that $3 \times 4 \times 5 \times 6=360=19^{2}-1$. Prove that the product of four consecutive integers is always one less than a perfect square.

The result is so mysterious at first that you begin to understand why the ancient Pythagoreans had a mystical relationship with mathematics.

Solution

Rather than just write down the answer, I thought it might be interesting to show how I figured it out. Basically, it was by considering several examples and seeing patterns.

$\mathbf{n}(\mathbf{n} \mathbf{- 1})(\mathbf{n}-\mathbf{2})(\mathbf{n}-\mathbf{3})$	$\mathbf{m}^{\mathbf{2}} \mathbf{- 1}$	$\mathbf{m}_{\mathbf{n}}-\mathbf{m}_{\mathbf{n} \mathbf{- 1}}$	\mathbf{m}	\mathbf{m}
$4 \cdot 3 \cdot 2 \cdot 1=24$	$=5^{2}-1$		$2 \cdot 2+1=2 \cdot 2+1 \cdot 2-1$	$2(3 \cdot 2 / 2)-1$
$5 \cdot 4 \cdot 3 \cdot 2=120$	$=11^{2}-1$	$6=3 \cdot 2$	$3 \cdot 2+2 \cdot 2+1 \cdot 2-1$	$2(4 \cdot 3 / 2)-1$
$6 \cdot 5 \cdot 4 \cdot 3=360$	$=19^{2}-1$	$8=4 \cdot 2$	$4 \cdot 2+3 \cdot 2+2 \cdot 2+1 \cdot 2-1$	$2(5 \cdot 4 / 2)-1$
$7 \cdot 6 \cdot 5 \cdot 4=840$	$=29^{2}-1$	$10=5 \cdot 2$	$5 \cdot 2+4 \cdot 2+3 \cdot 2+2 \cdot 2+1 \cdot 2-1$	$2(6 \cdot 5 / 2)-1$
$8 \cdot 7 \cdot 6 \cdot 5=1680$	$=41^{2}-1$	$12=6 \cdot 2$	$6 \cdot 2+5 \cdot 2+4 \cdot 2+3 \cdot 2+2 \cdot 2+1 \cdot 2-1$	$2(7 \cdot 6 / 2)-1$

From this I conjectured that the pattern was

$$
\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)=[(\mathrm{n}-1)(\mathrm{n}-2)-1]^{2}-1
$$

So I expanded the RHS to see if it equaled the LHS.

$$
\begin{aligned}
{[(\mathrm{n}-1)(\mathrm{n}-2)-1]^{2}-1 } & =([(\mathrm{n}-1)(\mathrm{n}-2)-1]-1)([(\mathrm{n}-1)(\mathrm{n}-2)-1]+1) \\
& =\left[\mathrm{n}^{2}-3 \mathrm{n}+2-2\right][(\mathrm{n}-1)(\mathrm{n}-2)] \\
& =\mathrm{n}(\mathrm{n}-3)(\mathrm{n}-1)(\mathrm{n}-2)
\end{aligned}
$$

Confirmed.

Maths Challenge Solution

Let

$$
\mathrm{Q}=\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)+1=\mathrm{n}^{4}+6 \mathrm{n}^{3}+11 \mathrm{n}^{2}+6 \mathrm{n}+1 .
$$

If Q is square, it must be of the form, $\left(\mathrm{n}^{2}+\mathrm{an}+1\right)^{2}$.
Expanding

[^0]$$
\left(\mathrm{n}^{2}+\mathrm{an}+1\right)^{2}=\mathrm{n}^{4}+2 \mathrm{an}^{3}+\left(\mathrm{a}^{2}+2\right) \mathrm{n}^{2}+2 \mathrm{an}+1,
$$
and comparing coefficients, $2 \mathrm{a}=6 \Rightarrow \mathrm{a}=3$; checking: $\mathrm{a}^{2}+2=11$.
Therefore,
$$
\mathrm{Q}=\left(\mathrm{n}^{2}+3 \mathrm{n}+1\right)^{2} .
$$

Hence, the product of four consecutive integers is always one less than a perfect square.
© 2019 James Stevenson

[^0]: ${ }^{1}$ "Consecutive Product Square" Problem ID: 185 (01 Nov 2004) Difficulty: 3 Star at mathschallenge.net. "A three-star problem: a good knowledge of school mathematics and/or some aspects of proof will be required." (https://mathschallenge.net/problems/pdfs/mathschallenge_3_star.pdf)

