Lucky 7 Problem

13 July 2019

Jim Stevenson

This interesting problem comes from Colin Hughes at the Maths Challenge website. ${ }^{1}$

Problem

Prove that for any number that is not a multiple of seven, then its cube will be one more or one less than a multiple of 7 .

Solution

Given n is any number that is not evenly divisible by 7 , let $n=7 q+r$, where the remainder $r=1,2,3,4,5,6$ and the multiple $q=0,1,2, \ldots$ Then

$$
n^{3}=(7 q+r)(7 q+r)(7 q+r)=7 \times(\text { sum of various integral products })+r^{3}=7 m+r^{3}
$$

for some integer m. Now consider r^{3} for $r=1,2,3,4,5,6$

$$
\begin{aligned}
& 1^{3}=1=7 \cdot 0+1 \\
& 2^{3}=8=7 \cdot 1+1 \\
& 3^{3}=27=7 \cdot 4-1 \\
& 4^{3}=64=7 \cdot 9+1 \\
& 5^{3}=125=7 \cdot 18-1 \\
& 6^{3}=216=7 \cdot 31-1
\end{aligned}
$$

Therefore

$$
r^{3}=7 s \pm 1 \text { for some integer } s
$$

and so

$$
n^{3}=7 k \pm 1 \text { for some integer } k
$$

In terms of modulo arithmetic, $n^{3} \equiv \pm 1 \bmod 7$, where n is not a multiple of 7 .

Corollary

$$
n^{3} \equiv-1,0,1 \bmod 7, \text { where } n \in \mathbf{N} .
$$

© 2019 James Stevenson

[^0]
[^0]: ${ }^{1}$ "Cubes And Multiples Of 7" Problem ID: 25 (Nov 2000) Difficulty: 3 Star, at MathsChallenge.net. "A three-star problem: a good knowledge of school mathematics and/or some aspects of proof will be required."

