Logging Problem

4 July 2019
Jim Stevenson
This is a delightful little problem from Dick Hess ([1] p.26) that exercises one's basic facility with logarithms.
Define x as $x=\log _{16} 7 \times \log _{49} 625$. Find an expression for $\log _{10} 2$ in terms of x where the only constants appearing are integers.

Solution

Let $\mathrm{u}=\log _{16} 7$ and $v=\log _{49} 625$, so $x=u v$.
Then

$$
16^{u}=7 \text { or } 2^{4 u}=7 .
$$

And

$$
49^{v}=625 \text { or } 7^{2 v}=25^{2}=5^{4} \text { or } 7^{v}=5^{2}
$$

Therefore

$$
\left(2^{4 u}\right)^{v}=2^{4 x}=5^{2}
$$

and

$$
2^{2 x}=5=10 / 2
$$

So

$$
2^{2 x+1}=10
$$

or

$$
\log _{10} 2=1 /(2 x+1)
$$

References

[1] Hess, Dick, The Population Explosion and Other Mathematical Puzzles, World Scientific Pub., 2016

