Cube Slice Angle Problem

21 June 2019
Jim Stevenson

This is from the UKMT Senior Challenge of 2004.
L, M, and N are midpoints of a skeleton cube, as shown. What is the value of angle LMN?
A 90°
B 105°
C 120°
D 135°
E 150°

My Solution

My approach uses vectors and the dot product to obtain the angle
$u \cdot v=|u||v| \cos \angle L M N$ between them. Run a vector \mathbf{u} from the point M to the point N and a vector \mathbf{v} from M to L . Locate the origin of the three dimensional coordinate system at M with \mathbf{u} lying in the xz-plane and \mathbf{v} lying in the yzplane as shown in the figure at right. L, M, and N being midpoints means that L and N are the same distance from each of their corresponding coordinate axes so that the vectors take the form

$$
\begin{aligned}
& \mathbf{u}=\mathbf{i}+\mathbf{k} \\
& \mathbf{v}=\mathbf{j}-\mathbf{k}
\end{aligned}
$$

Then the dot product yields
so

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =|\mathbf{u} \| \mathbf{v}| \cos \angle \mathrm{LMN} \\
0+0-1 & =\sqrt{2} \sqrt{2} \cos \angle \mathrm{LMN}
\end{aligned}
$$

$$
\cos \angle \mathrm{LMN}=-1 / 2
$$

and

$$
\angle \mathrm{LMN}=120^{\circ}(\text { Answer } \mathrm{C})
$$

UKMT Solutions

Solution 1. Let the side of the cube be of length 2. Then

$$
L M=M N=\sqrt{1^{2}+1^{2}}=\sqrt{2} \text { and } L M=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{6}
$$

So $L M N$ is an isosceles triangle with sides $\sqrt{2}, \sqrt{2}, \sqrt{6}$. Thus

$$
\cos \angle N L M=\frac{\sqrt{6} / 2}{\sqrt{2}}=\frac{\sqrt{3}}{2}
$$

Solution 2. Alternatively, it may be shown that L, M and N , together with the midpoints of three other edges of the cube, are the vertices of a regular hexagon. So $\angle L M N$ may be shown to be 120°.

Hence $\angle N L M=30^{\circ}=\angle M N L$. So $\angle L M N=120^{\circ}$.
© 2019 James Stevenson

