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I came across this problem in Alfred Posamentier’s 

book ([1] p.155), but I remember I had seen it a couple 

of places before and had never thought to solve it.  At 

first, it seems like magic. 

In any convex quadrilateral (non-intersecting sides) 

inscribe a second convex quadrilateral with its vertices 

on the midpoints of the sides of the first quadrilateral.  

Show that the inscribed quadrilateral must be a 

parallelogram. 

Solution 

Once you see the lines added in Figure 1, the 

approach is obvious if you remember properties of 

similar triangles from plane geometry.  The theorems 

virtually directly give you the desired parallelism (in 

particular, Book VI Prop 2, see Appendix below p.3). 

My problem was that even though I remembered 

the basic idea, I was always a bit hazy on the details 

and especially the proofs.  I looked up Euclid’s 

Elements online and Book VI which dealt with similar 

triangles ([2] and the Appendix below).  Euclid’s initial 

definition of similar triangles said they had equal 

corresponding angles and the corresponding sides were proportional, whereas I had not remembered 

that both properties were required.  But then Props 4 and 5 said that either condition implied the 

other.  Then I realized I could not remember how to prove these things.  And when I looked at the 

proofs, I found them a bit intricate and not all that obvious.  Indeed, I always found proofs involving 

proportions to be a bit opaque.   

Rather than just quote the results, I wanted to have a solution that followed from simple 

arguments.  A simple argument by my definition was one involving concepts I could remember after 

some 50 or 60 years (and that did not include the similar triangle proofs).  It turned out that vectors 

fulfilled this criterion, at least for me.  That is, the geometric proof reduced to some arithmetic 

procedures with vectors, and they are easy to remember.  In fact, I already used these ideas in “The 

Four Travelers Problem” ([3]). 

Figure 2 shows the heart of the matter.  We extract the 

triangle ABD from Figure 1 and represent the sides AD 

and AB by the vectors u and v, respectively.  Then the side 

DB becomes the vector difference v – u.  The line segment 

AE in Figure 1 becomes the vector tu, where t = 
1
/2, and 

the line segment AF becomes the vector tv.  Then the line 

segment EF is the vector tv – tu.  But 

 tv – tu = t(v – u) (*) 

 
 

 
Figure 1    Problem Solution 

 
Figure 2    Similar Triangles 
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(There are actually a bunch of things going on here, which are covered by the definition of a 

vector space.  We have four operations that need to be “compatible”, that is, satisfy distributive laws, 

namely, (1) vector addition, (2) scalar multiplication—multiplication of a vector by a scalar (real 

number), (3) scalar addition, and  (4) scalar multiplication. First, all these operations commute.  Then, 

they satisfy distributive laws: 

 (1) and (2): a(v + w) = av + aw 

 (2) and (3): (a + b)v = av + bv 

 (2) and (4): (ab)v = a(bv) 

So in our equation (*) above, we have 

tv – tu = tv + (-1)(tu) = tv + (-1)(t)u = t(v + (-1)u) = t(v – u) 

where subtraction is equivalent to adding the additive inverse –u, and –u = (-1)u. 

In other words, the rules which make these vector operations “like” operations with real numbers 

mean we can “forget about it” just as we do with real numbers—which is further confirmed by using 

the same notation for technically different operations.) 

Now equation (*) gives two things at once: 

1. tv – tu = t(v – u) || v – u, since any scalar multiple of a vector is parallel to that vector (or if 

you remember things about the vector cross product u x v = – v x u (so u x u = 0) and  u x v 

= 0 ⇒ u || v, then (tu) x u = t(u x u) = 0 proves the statement).  So in our case EF || DB. 

2. The length of tv – tu (EF in our case) is t = ½ the length of v – u (DB in our case). 

We can use this same argument on the triangle CBD with line segment GH connecting the 

midpoints to yield GH || DB and GH = ½ of DB.  Therefore, GH || DB || EF and GH = ½ DB = EF.  

Repeat this argument for the triangles ABC and CDA to yield FG || HE and FG = HE.   

Hence, EFGH is a parallelogram.
1
  

 

Appendix 

Euclid’s Elements Book VI ([2]) 

Definitions 

Definition 1.  

 Similar rectilinear figures are such as have their angles severally equal and the sides about the 

equal angles proportional.
2
  

… 

Definition 4.  

 The height of any figure is the perpendicular drawn from the vertex to the base.  

                                                      
1
  JOS:  Actually, it is sufficient to show the pairs of midpoint-connecting lines are parallel, since pairs of 

intersecting parallel lines cut off corresponding line segments of equal length, and thus form a 

parallelogram.  The proof is simple and LTR. 
2
  JOS:  Props 4 and 5 show either property alone is sufficient to define similar triangles. 
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Propositions 

Proposition 1.  

 Triangles and parallelograms which are under the same height are to one another as their 

bases.  

Proposition 2.  

 If a straight line is drawn parallel to one of the sides of a triangle, then it cuts the sides of the 

triangle proportionally; and, if the sides of the triangle are cut proportionally, then the line 

joining the points of section is parallel to the remaining side of the triangle.  

Proposition 3.  

 If an angle of a triangle is bisected by a straight line cutting the base, then the segments of the 

base have the same ratio as the remaining sides of the triangle; and, if segments of the base 

have the same ratio as the remaining sides of the triangle, then the straight line joining the 

vertex to the point of section bisects the angle of the triangle.  

Proposition 4.  

 In equiangular triangles the sides about the equal angles are proportional where the 

corresponding sides are opposite the equal angles.  

Proposition 5.  

 If two triangles have their sides proportional, then the triangles are equiangular with the equal 

angles opposite the corresponding sides.  

Proposition 6.  

 If two triangles have one angle equal to one angle and the sides about the equal angles 

proportional, then the triangles are equiangular and have those angles equal opposite the 

corresponding sides.  
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