Tandem Circles

31 March 2019

Jim Stevenson

James Tanton had another interesting puzzle on Twitter.
https://twitter.com/jamestanton/status/1111258545599602689
James Tanton, 28 March 2019
Points P and Q each move counterclockwise on a circle, uniform speed, one revolution per minute. At each instant, segment PQ is translated so that P is at the origin. Let Q ' be the image of Q . What curve is traced by the points Q^{\prime} ?

Solution

There may be an easier direct geometric solution, but I thought the problem suggested complex variables. Figure 1 shows a representation of the problem in complex variables, with z corresponding to the point P on the first circle and z^{\prime} corresponding to the point Q on the second circle.

Assuming that z^{\prime} rotates around its circle at the same rate and direction as z , then its argument is also the same as for z , namely, θ. Furthermore, Tanton's figure seems to indicate a constant phase offset of z^{\prime}, represented by θ_{0}. Let z_{0} be the complex variable representing the separation of the centers of the two circles and w be the complex variable representing the line segment

Figure 1 Complex Variable Representation of the Problem

PQ. Then we are interested in seeing what a plot of w looks like in the complex plane.
At first, I thought if might produce an ellipse, but after performing the calculations shown in Figure 1, I realized it sweeps out a circle around z_{0} with radius equal to $|\alpha| r$, where α is a complex constant that collects all the differences between the two circles. The fact that α is constant means we get another circle for the plot of $\mathrm{Q}^{\prime}=\mathrm{w}$, which is a rotated, shrunk or expanded version of the original second circle (Figure 2).

Figure 2 Plot of w (aka Q^{\prime}) in the complex plane.

Addendum

On 29 March 2019, James Tanton added the following:
(https://twitter.com/jamestanton/status/11116254
30723751936)

And of course, a la @AlexKontorovich: P \& Q each move on a circle uniform speed, one revolution per min, but in reverse directions. At each instant, segment PQ is translated so that P at the origin. Image of Q is Q^{\prime}. What curve is traced by the Q^{\prime} ? (Re yesterday, again a circle?)

First, the diagram as shown is just the same as the previous diagram (the motion around both circles is counter-clockwise), but with a different phase offset. So the answer is the same.

If the intent was to have Q move around the second circle in a clockwise direction, then instead of $\alpha \mathrm{z}$ in Figure 2 we have $\alpha \bar{z}$, the
 complex conjugate. The new circle has the same radius as before, but θ becomes $-\theta$, that is, the rotation of w is now clockwise.
© 2019 James Stevenson

