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It is a bit presumptuous to think I 

could reduce the universe of 

mathematics to some succinct essence, 

but ever since I first saw a column in 

Martin Gardner’s Scientific American 

Mathematical Games in 1967, I thought 

his example illustrated the essential 

feature of mathematics, or at least one of 

its principal attributes.  And he posed it 

in a way that would be accessible to 

anyone.  I especially wanted to credit 

Martin Gardner, since the idea 

resurfaced recently, uncredited, in some 

attractive videos by Katie Steckles and 

James Grime ([1]).  (This reminds me of 

the Borges idea that “eighty years of 

oblivion are perhaps equal to novelty” 

([2]).) 

Here is the relevant excerpt from Martin Gardner’s column ([3]): 

• Nine playing cards, with values from ace to nine, are face up on the table. Players take turns 

picking a card. The first to obtain three cards that add to 15 is the winner. … 

• Each of the following words is printed on a card: HOT, HEAR, TIED, FORM, WASP, 

BRIM, TANK, SHIP, WOES. The nine cards are placed face up on the table. Players take 

turns removing a card. The first to hold three cards that bear the same letter is the winner. 

(The Canadian mathematician Leo Moser, who devised this game, called it “Hot.”)   

For each game the question is: If both players make their best moves, is the game a win for 

the first player, a win for the second player, or a draw? Perhaps the reader has already experienced 

what the Gestalt psychologists call “closure” and recognized that [both] games are isomorphic 

with ticktacktoe!  

It is easy to see that this is the case. For the first game we make 

a list of all the triplets of distinct digits from 1 to 9 that have a sum 

of 15. There are exactly eight such triplets. They can be interlocked 

on a ticktacktoe board as shown in Figure 88 to form the familiar 

order-3 magic square on which every row, column, and main 

diagonal is one of the triplets. Each numbered card drawn by a 

player corresponds to a ticktacktoe play on the cell of the magic 

square that bears that digit. Each set of triplets that wins in the card 

game corresponds to a winning ticktacktoe row on the magic 

square. Anyone who can play a perfect game of ticktacktoe and 

who also memorizes the magic square can immediately playa 

perfect game in this card version. … 

 
https://www.sciencedaily.com/images/2014/11/141113152916_

1_540x360.jpg   Credit: © agsandrew / Fotolia 
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The isomorphism of Moser’s word game and 

ticktacktoe becomes obvious when the nine 

words are written inside the cells of a ticktacktoe 

matrix as shown in Figure 90. Each set of three-

in-a-row words has a common letter, and there 

are no such sets other than the eight displayed in 

this way. Again, memorizing the square of words 

instantly enables a perfect-game ticktacktoe 

player to play a perfect game of Hot. Since 

ticktacktoe played rationally is always a draw, 

the same is true of the … equivalent games, 

although the first player naturally has a strong 

advantage over a second player who is not aware that he is playing disguised ticktacktoe or who 

may not play a perfect game of ticktacktoe.  

One who grasps the essential identity of the three games will have obtained a valuable 

insight; mathematics abounds with “games” that seem to have little in common and yet are merely 

two different sets of symbols and rules for playing the same game. Geometry and algebra, for 

example, are two ways of playing exactly the same game, as Descartes’s great discovery of 

analytic geometry shows. … 

The idea is illustrated succinctly in Figure 1.  The essence of the two games is abstracted in the 

form of “knowledge representation” (to use a 1980s artificial intelligence term) or a model that 

preserves the objects in the games and the actions between them, albeit in a different form.  Namely, 

both games involve 9 objects, numbers in the first and words in the second.  Both games involve 

being the first to choose 3 of the objects that satisfy a criterion, summing to 15 in the first game and 

having a unique common letter in the second game.  Via the interim mapping both games assign their 

objects to spaces in the tic-tac-toe grid and both satisfy their winning criterion via the three-in-a-row 

win in tic-tac-toe.  This sameness of objects and relationships is captured in the word “isomorphism.” 

 

Figure 1    Martin Gardner Example of Mathematical Knowledge Representation 

The other significant aspect to these games is that through an ingenious transformation they are 

mapped to a model whose behavior is completely understood.  The strategy for playing the “15” card 
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FIGURE 90   Key to the game of Hot 
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game and Hot is then immediately known from the knowledge of tic-tac-toe.  The game of tic-tac-toe 

has been analyzed on its own for centuries.  In fact, after coming to an understanding of all the 

strategies for the 3 x 3 game, natural questions as to what about a 4 x 4 game? or about an n x n game?  

What about 3-dimensional tic-tac-toe?  3 x 3 x 3? etc.   

Physical Reality to Mathematics Connections 

So we have three elements in this view: the original “physical reality”, the transformation or 

interim representation, and then the final abstraction or model.  Mathematicians, especially so-called 

“pure” mathematicians, are primarily engaged with the third component of this triad.  They 

thoroughly explore and question objects and relationships, possibly initially suggested by a 

connection with physical reality, but ultimately driven by the inner logic of the objects themselves 

and even their relationships with other objects under study.  This activity often leads the 

mathematician to create new structures and systems that seem to have no obvious relationship to 

physical reality. 

One might say “applied” mathematicians or physicists concentrate on the interim transformations 

between “physical reality” and the mathematical models.  As the Gardner examples show, coming up 

with the interim transformations takes a lot of ingenuity and creativity.  It often requires knowledge of 

existing models or the ability to sketch new models, which then have to be made rigorous by the 

mathematicians.  In some cases, the sketchy new models of the physicists point the way to already 

existing structures the mathematicians have studied on their own.  One example out of many would 

be Heisenberg’s early formulation of quantum mechanics in 1925 that others realized was an 

application of matrices developed by the mathematician Cayley decades before.  On the other hand, 

the sketchy ideas of the physicists can lead to new mathematics, such as the theory of distributions 

that grew out of the quantum physicists’ idea of a Dirac delta function δ that was 0 everywhere except  

at the origin where it was “infinitely” large to enable its integral from –∞ to +∞ to be 1 (as stated this 

is nonsense; it took the mathematicians to create a logical theory (distributions) that captured the 

physicists’ ideas). 

The power of isomorphism is that it is an exact parallel between two regimes: there is a one-to-

one correspondence between the objects in the two settings, and the actions or transformations 

between the objects in one setting are the same as those in the other setting—they have the same 

properties and characteristics.  The two regimes are true mirrors of one another.  But there are weaker 

parallels between situations captured in the idea of a mathematical model of some of the features in a 

setting.  The mathematical structures and operations are not necessarily identical to the physical 

situation, but they capture some basic properties through the process of abstraction.  How this is 

possible is where the magic and mystery of mathematics comes in—a mystery which is ably 

presented in Eugene Wigner’s famous essay, “The Unreasonable Effectiveness of Mathematics in the 

Natural Sciences” ([4]).  The great examples are Newton’s laws of motion and gravitation that govern 

planetary motion, Einstein’s Theory of General Relativity that supplanted Newton’s scheme where 

motion under the force of gravity was replaced by geodesic paths in a four-dimensional curved space-

time, and finally the Standard Model of Quantum Mechanics where conservation laws correspond to 

symmetries of Lie groups, thanks to the theorems of Emmy Noether. 

I should add that this “mathematization” of physical reality is not limited to applied 

mathematicians and physicists.  It spread to other physical sciences such as chemistry, geology, 

meteorology, and even biology, especially recently.  It even has infected social sciences such as 

economics, which has been practically reduced to a branch of mathematics in the last 50 years.  

(Many question whether this is entirely a good thing.)  Of course, probability and statistics have been 

a major tool in this invasion, but calculus and its associated differential equations have been a 

bulwark in mathematical modeling in these fields. 
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Intra-Mathematics Connections 

But within mathematics itself the representation of one mathematical system by another is one of 

the supreme joys of mathematical endeavors.  These often hidden relationships are truly delightful 

when they are discovered—reflecting surprise and pleasure like that associated with a deft magic 

illusion. 

 As alluded to by Martin Gardner, perhaps the most famous connection occurred when Descartes 

(and Fermat) mapped plane geometry to symbolic algebra in the 17
th
 century.  But even more subtly 

and profoundly was the actual creation of symbolic algebra itself by the end of the 16
th
 century after 

several thousand years of having to solve mathematical problems mostly rhetorically. That is, word 

problems could not be solved by mapping them to symbolic algebraic equations and manipulating 

them via arithmetic operations.  They had to be unraveled mentally and with the possible help of 

computational tools such as an abacus.  Other than plane geometry there were no mathematical 

models available to solve problems.  It is true that plane geometry was used extensively for some 

2000 years to solve what we now consider algebraic problems, such as finding solutions to quadratic 

and cubic equations.  But these involved geometric constructions that were elaborate and difficult.   

The arrival in the West of symbolic algebra by the 16
th
 century followed the introduction earlier 

from the East of the Indo-Arabic positional decimal number system.  The modern trend is to down-

play mastering the arithmetic procedures associated with this number system in favor of using 

electronic calculators.  Certainly that makes sense for lengthy problems, but no student should be 

deprived of experiencing the marvel of a system of numerals (names for numbers) that contain their 

own method of computation.  We learn how to add, subtract, multiply, and divide numbers by 

manipulating the digits and their positions in the numerals representing these numbers.  How 

marvelous is that!  What other names for objects contain such richness?  That is a mathematical 

model par excellence, and it is available to anyone, not just a mathematician. 

 Grant Sanderson at his Youtube website 3blue1brown has some great examples of how 

mathematical models and representations can solve mathematically grounded problems, often in very 

imaginative ways.  He explains how counting the number of collisions two moving masses create 

between themselves and a wall produces the decimal expansion for pi ([5]) and how dividing the 

spoils from a stolen necklace relates to the Borsuk-Ulam Theorem in topology ([6]).  Many of the 

problems I have collected for my Meditations on Mathematics are solved with some of these 

surprising models, such as mod 3 arithmetic for the Barrel of Beer problem, the “skew billiard table” 

for the Three Jugs Problem, and Pascal’s Triangle in the Chalkdust Grid Problem.  And of course 

most of the problems are solved the now classic way of mapping them to geometric figures (such as 

space-time diagrams), assigning algebraic relationships, and solving them algorithmically.  I cringe 

whenever I hear a popularized book about mathematics proudly state how few equations it uses.  That 

completely obliterates the essence of mathematics, this mapping of language and problems to 

symbolic mathematical models.   

The examples entirely within mathematics become ever more sophisticated and amazing.  Galois 

essentially gave birth to the field of group theory by his mapping of the problem of solving 

polynomial equations of arbitrary degree to the problem of finding certain subgroups of symmetry 

groups associated with the equations.  From this linkage he confirmed what others had discovered, 

that the general polynomial equation of degree 5 does not have a general formula for its solution like 

the quadratic formula for quadratic equations.  Nor in fact do any general equations of degree higher 

than 5.  Only certain equations have such solution formulas, depending on their associated subgroups.   

The Laplace Transform maps linear differential equations to rational functions (the ratios of 

polynomials) where the polynomial variable s corresponds to differentiation and the inverse 1/s 

corresponds to integration.  In my essay on Point Set Topology I indicated how solutions to 
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differential equations can be shown to exist by mapping the set of functions associated with the 

differential equations to a topological space of points where the solution to a differential equation 

becomes a fixed point for an associated transformation.   

The examples could be multiplied indefinitely.  So I feel quite justified in proclaiming that this 

mapping of physical reality or mathematical problems to some mathematical representation is truly 

the essence of mathematics.  Virtually all mathematical endeavors are involved with some aspect of 

this activity. 
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