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Reading Tanya Khovanova’s recent blog post reminded me of the earliest math problem my 

father posed to me at the dinner table one night.  I grew up in an age when the family all ate together 

at the dinner table.  We often addressed the major controversy of the day, played games, or 

considered puzzles.  This night my father posed if fruit flies doubled their number each minute and 

you put two fruit flies in a quart jar that was filled in an hour, when was it half filled? 

Here is Tanya Khovanova’s posting: 

(https://blog.tanyakhovanova.com/2018/11/the-annoyance-of-hyperbolic-surfaces/, retrieved 

12/1/2018) 

The Annoyance of Hyperbolic Surfaces 
Tanya Khovanova, 27 November 2018, 05:19 pm 

 

I do not like making objects with my hands. But I lived in Soviet Russia. So I knew how to 

crochet, knit, and sew — because in Russia at that time, we didn’t have a choice. I was always bad at 

it. The only thing I was good at was darning socks: I had to do it too often. By the way, I failed to 

find a video on how to darn socks the same way my mom taught me. 

Then I came to the US. I suddenly found myself in a rich society, where it was cheaper to buy 

new stuff than to spend the time doing things with my hands. So I happily dropped my craftsmanship. 
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After not working with my hands for 28 years, one day I needed hyperbolic surfaces for my 

classes and I couldn’t find any to buy. Hyperbolic surfaces are famous for providing an example 

when the Euclid’s Fifth axiom doesn’t work. These hyperbolic surfaces look flat locally, so you can 

continue a line in any given direction. If you draw a line on such a surface and pick a point that is not 

on the line, then you can draw many lines through the point that are parallel to the given line. 

My students are more important than my dislike of crochet, so I decided to just do it myself. I 

asked my friend Debbie, who knows how to crochet, for advice, and she gave me more than advice. 

She gave me a hook and a piece of yarn and reminded me how to work the hook. She started me with 

a small circle. After that all I had to do was add two stitches for each stitch on the perimeter of the 

circle.
1
 The finished product is this green ballish thing that looks like a brain, as in the photo. 

Outside the starting circle, each small surface segment of this “brain” looks the same, making the 

“brain” a surface of constant curvature.
2
 

I chose a ratio of 2 to 1, adding two new stitches for each previous stitch. With this ratio, my 

flattish surface started looking like a ball very fast. The length of the perimeter doubled for every row. 

Thus each new row I crocheted took the same total amount of time that I had already spent on 
the whole thing.

3
 All the hours I worked on this “brain,” I kept thinking: darn, it is so unrewarding to 

do this. Annoying as it was, the thing that kept me going was my initial decision to continue to use up 

all the yarn Debbie had given me. In the end, with this ratio, half the time I worked was spent 

making the final row. 

Khovanova’s last sentence contains the solution to the fruit fly problem, which I will address in a 

minute.  But the first emphasized sentence poses a new slant that I wanted to justify. 

Cumulative Time.  Suppose T is the time it took Khovanova to crochet her first row, then it took 

2T minutes to crochet the second row and 2
n-1

T minutes to crochet the nth row.  Let Tn be the total 

time it took for her to crochet n rows.  Then 

Tn = T + 2T + 2
2
T + … + 2

n-1
T 

Applying the standard trick used for geometric series, we multiply Tn by 2 and subtract: 

Tn – 2Tn =  T –  2
n
T   ⇒  2

n
T = Tn + T 

That is, the time to crochet the n+1 row is equal to the time to crochet all the previous n rows plus the 

first row again.  Khovanova neglects the extra time to do the first row.  Given how large the times 

grow, it is not a bad approximation to neglect the extra time for the first row. 

In fact, let’s consider some numbers to get a feel for the situation.  I measured the photo above to 

get that the “ball” was about 3.5” across, which would yield a radius of 7/4”.  I then measured the 

photo to estimate the width of a crochet row as 1/4".  Making the (unwarranted) assumption that 

Khovanova began virtually in the center, that would yield 7 rows of yarn.  If we also assume she 

crocheted her first row in T = 30sec = 1/2min, Then it took her 2
7
T = 128(1/2) = 64min = 1hr 4 min to 

crochet the last row, which was also how long it took her to crochet the previous 6 rows, neglecting 

the extra 30 sec for the first row. 

                                                      
1
  JOS:  The other characterization of a hyperbolic surface is the perimeter of a circle drawn on the surface is 

greater than 2πr where r is the radius.  That is, the perimeter of a circle in a flat plane grows linearly as the 

length of the radius, whereas in a hyperbolic surface it grows faster.  In Tanya Khovanova’s case the length 

of the rows is growing exponentially with each added row.   
2
  JOS:  This comment about constant curvature will be explained further below. 

3
  JOS: Notice that Khovanova’s statement that amount of time to do a row is proportional to the cumulative 

time to do all the rows up the then is a characteristic of exponential growth. 



Exponential Yarn 190203.doc 3 

Fruit Fly Problem.  The answer to the fruit fly problem is the jar is half full at 59 minutes, since 

the next minute all the flies double, which fills the jar.  That is essentially the same reasoning as 

Khovanova gives in her last sentence. 

Constant Curvature.  A thorough discussion about constant curvature will have to be postponed 

for a more mathematical treatment.  But at least I can describe a little more clearly the “surface” that 

relates to Khovanova’s crocheted “ball”.    

  
Figure 1  Cylindrical Surface Figure 2  Conical Surface 

Let’s approach the idea in steps.  Suppose Khovanova crotcheted each row in exactly the same 

length.  Then the circumference C of the row would not change and she would get a sleeve (ignoring 

the first solid disk) as in Figure 1.  Note that the radius of each added row would stay constant at r = 

R, the original size. 

Now suppose she crocheted each successive row by adding a few links of length ∆C.  If we 

designate the row number by x, then the circumference of row x would be C = C0 + x ∆C where C0 = 

2πR, the original length.  (We have “smoothed” the pictures by imagining x changing continuously, 

rather than in discrete integers.)  Now the constant change in circumference corresponds to a constant 

change in radius ∆r = ∆C/2π.  So C = 2π(R + x∆r) and r = R + x∆r, as in Figure 2.  Since ∆r is a 

constant increment, C increases linearly with each row x. 

Now we consider Khovanova’s original 

crocheted “surface.”  If you pull the original central 

disk out until the work is stretched full length, it 

will look something like the picture in Figure 3, 

where we have “smoothed” the discrete rows into a 

continuous shape.  The idea that each circular row is 

twice the length of the previous row is equivalent to 

saying each corresponding radius of the circle is 

twice the previous.  So starting with a disk of radius 

R, after crocheting x rows, the radius of that row 

will be R2
x
.  (The picture is not to scale.  A picture 

of true exponential growth takes up too much 

space.) 

This “bugle”-shaped surface is naturally often 

called a bugle surface.  The exploration of this type 

of surface will have to wait for a more mathematical analysis that I carried out later.  At which point I 

discovered that the presentation given here included a subtle misconception that confused me for 

some time.     
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Figure 3  Crocheted Surface 


