Turnpike Driving

30 January 2019

Jim Stevenson

This turns out to be a fairly challenging driving problem from Longley-Cook ([1], \#86 p.55).
"Mileage on the Thru-State Turnpike is measured from the Eastern terminal. Driver A enters the turnpike at the Centerville entrance, which is at the 65 -mile marker, and drives east. After he has traveled 5 miles and is at the 60 -mile marker, he overtakes a man operating a white-line painting machine who is traveling east at 5 miles per hour. At the 35 -mile marker he passes his friend B, whose distinctive car he happens to spot, driving west. The time he notes is 12:20 p.m. At the $25-$ mile marker he passes a grass cutter traveling west at 10 miles per hour. A later learns that B overtook the grass cutter at the 21 -mile marker and passed the white-line painter at the 56 -mile marker. Assuming A, B, the painter and the grass cutter all travel at constant speeds, at what time did A enter the turnpike?

Solution

Figure 1 Problem Statement
Figure 1 shows the problem setup with P representing the white-line painter and G the grass cutter. We make the time and distance relationships explicit in Figure 2 where we have added the times for the line painter and the grass cutter to go 4 miles. From Figure 2 we can also get equations for the times drivers A and B take to go between the points of meeting the other drivers. We get

$$
\begin{aligned}
& \frac{4 m i}{10 m p h}=\frac{10 m i}{v_{A}}+\frac{14 m i}{v_{B}} \\
& \frac{4 m i}{5 m p h}=\frac{25 m i}{v_{A}}+\frac{21 m i}{v_{B}}
\end{aligned}
$$

If we let $x=1 / v_{A}$ and $y=1 / v_{B}$, then we have the following simultaneous linear equations in two unknowns.

$$
\begin{aligned}
& 10 x+14 y=2 / 5 \\
& 25 x+21 y=4 / 5
\end{aligned}
$$

or

$$
\begin{gathered}
50 x+70 y=2 \\
125 x+105 y=4
\end{gathered}
$$

We solve the equations via Cramer's Rule, that is, $x=D_{1} / D_{0}$ and $y=D_{2} / D_{0}$ where

$$
\begin{gathered}
D_{0}=\left|\begin{array}{cc}
50 & 70 \\
125 & 105
\end{array}\right|=25 \cdot 35\left|\begin{array}{ll}
2 & 2 \\
5 & 3
\end{array}\right|=-4 \cdot 25 \cdot 35 \\
D_{1}=\left|\begin{array}{cc}
2 & 70 \\
4 & 105
\end{array}\right|=2 \cdot 35\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|=-2 \cdot 35 \\
D_{2}=\left|\begin{array}{cc}
50 & 2 \\
125 & 4
\end{array}\right|=2 \cdot 25\left|\begin{array}{ll}
2 & 1 \\
5 & 2
\end{array}\right|=-2 \cdot 25
\end{gathered}
$$

Therefore

$$
\mathrm{x}=\mathrm{D}_{1} / \mathrm{D}_{0}=(-2 \cdot 35) /(-4 \cdot 25 \cdot 35)=1 / 50 \Rightarrow \mathrm{v}_{\mathrm{A}}=50
$$

and

$$
y=D_{2} / D_{0}=(-2 \cdot 25) /(-4 \cdot 25 \cdot 35)=1 / 70 \Rightarrow v_{B}=70
$$

Thus

$$
\begin{aligned}
12: 20-\mathrm{t}_{0} & =30 / \mathrm{v}_{\mathrm{A}}=30 / 50=3 / 5 \\
\mathrm{t}_{0}=121 / 3-3 / 5 & =176 / 15=11^{11} / 15=11^{44} / 60
\end{aligned}
$$

So the time driver A entered the thru-way is $\mathrm{t}_{0}=11: 44 \mathrm{am}$.

References

[1] Longley-Cook, L. H., Work This One Out, Ernest Benn Ltd., 1960, Fawcett Publications, Crest Reprint, 1962.
© 2019 James Stevenson

