Right Triangle with Roots

29 January 2019

Jim Stevenson

This is an interesting problem from the United Kingdom Mathematics Trust (UKMT) Senior Math Challenge of 2008.

The length of the hypotenuse of a particular right-angled triangle is given by

$$\sqrt{1+3+5+7+...+23+25}$$
.

The lengths of the other two sides are given by

$$\sqrt{1+3+5+7+...+(x-2)+x}$$

and

$$\sqrt{1+3+5+7+...+(y-2)+y}$$

where x and y are positive integers. What is the value of x + y?

Solution.

This relies on the formula for the arithmetic sum of odd integers, which can be derived from the arithmetic sum of all integers as follows.

$$1 + 3 + 5 + \dots + (2n + 1) = \sum_{k=0}^{k=n} 2k + 1 = 2\sum_{k=0}^{k=n} k + (n+1) = 2\frac{n(n+1)}{2} + (n+1) = (n+1)^2$$
(1)

From the Pythagorean theorem we have

$$1 + 3 + 5 + \dots + 23 + 25 = (1 + 3 + 5 + \dots + (x - 2) + x) + (1 + 3 + 5 + \dots + (y - 2) + y)$$

or from equation (1) with $25 = 2 \cdot 12 + 1$, x = 2m + 1, and y = 2n + 1,

$$(13)^2 = (m+1)^2 + (n+1)^2$$

The only Pythagorean triple with 13 as the hypotenuse is a 5-12-13 triangle. So m = 4 and n = 11, which implies that x = 2m + 1 = 9 and y = 2n + 1 = 23, so that x + y = 32.

© 2019 James Stevenson

