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Perspective Map 
(18 July 2016, rev 8 Aug 2016, rev 2 January 2019) 

Jim Stevenson 

A number of recent puzzles have involved perspective views of objects (see for example below 

p.8).  I had never really explored the idea of a perspective map in detail.  So some of the properties 

associated with it always seemed a bit vague to me.  I decided I would derive the mathematical 

equations for the perspective or projective map and see how its properties fell out from the equations. 

Figure 1 Shows the basic idea.  A person 

is standing at the origin (0, 0, 0) of a three 

dimensional axis system with the z-axis being 

vertical and the y-axis straight out in front, 

perpendicular to the x-axis.  Their eyes are at 

height h above the xy-plane.  They are 

looking at objects through a view screen 

located a distance d from their face.  So sight-

lines will associate points (x, y, z) on the 

objects to points (X, Y, Z) on the view screen 

(where always Y = d). 

Figure 2 and Figure 3 provide views of 

the yz-plane and xy-plane, respectively, from 

which we can extract the values of X and Z 

that correspond to the projected point on the 

view screen. 

From Figure 2 we get the relation 
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Figure 2    xz View Figure 3    xy View 

 

Figure 1    Perspective Lines 
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From Figure 3 we get  
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So the perspective map (x, y, z) → (X, Y, Z) is given by  
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Let us now consider what happens to sets of parallel lines under the perspective map.  We will be 

looking at lines parallel to each of the axes and also lines perpendicular to the z-axis but rotated from 

the strictly horizontal or perpendicular.  Figure 4 shows the results for all the parallel lines except 

those parallel to the z-axis.  The details will be discussed below. 

Horizontal Parallel Lines 

First we consider lines parallel to the x-axis.  This means the y and z 

coordinates are constant and only the x coordinate varies.  We see from 

equation (1) that X varies linearly with x and Z remains an unchanged 

constant.  So the resulting projections on the view screen will be 

horizontal parallel lines at various fixed elevations Z. 

Vertical Parallel Lines 

Consider next lines parallel to the z-axis.  In this case, x and y are 

held constant and z varies.  From equation (1) X and Y are fixed and only 

Z varies linearly with z, which just amounts to a reparameterization of 

 

Figure 4    View Screen showing projections of various sets of parallel lines. 

 
 

Perspective Map 
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the line.  So the parallel vertical lines remain parallel and vertical in the view screen.   

Perpendicular Parallel Lines 

Consider next parallel lines perpendicular to the view screen 

(parallel to the y-axis).  This is where things get interesting.  Here we 

fix x and z and let y vary.  In order to view only images in front of the 

view screen, we will assume y > d.  From equation (1) as y → ∞, we 

see that X.→.0 and simultaneously, Z.→.h.  This point (0, d, h) is 

labeled Vanishing Point 1 in Figure 4.  So note that all the 

perpendicular parallel lines end up at this vanishing point on the 

horizon.  Note further that this point is directly opposite the line of 

sight of the observer standing at (0, 0, 0). 

In our figures we have been tacitly 

assuming z < h, so that the parallel lines 

approach the vanishing point from below.  But 

there is no reason to make such a restriction, 

that is, we can have z > h and still the lines will 

converge to the same vanishing point.  Figure 5 

from the article on Dürer’s table to be discussed 

below (p.4) shows lines emanating from points 

z above the horizon h. 

Rotated Horizontal Parallel Lines 

Consider next parallel lines rotated and 

perpendicular to the z-axis.  Things become 

even more interesting in this case.   

Suppose the lines are rotated by an angle θ 

with respect to the y-axis as shown in Figure 6.  

Such a rotation takes a point (x, y) (ignoring the 

constant z) and maps it to the point (x', y') via 

the equations  

. θθ sincos' yxx −=  

. θθ cossin' yxy +=  (2) 

Now equations (1) become 
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Figure 5    St. Jerome in His Study, by Albrecht Dürer, 

1514. The vanishing point V for lines that are 

perpendicular to the picture plane.  The height of the 

vanishing point gives us the horizon line h.  (Crannell 

et al.) 

 

Figure 6    Rotated Parallel Lines 
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Since every set of rotated parallel lines is obtained from a set of perpendicular lines, we can fix x 

= c a constant to select a particular line and then let y vary.  This has the effect of parameterizing the 

(x', y') line by y.  Then we have as y → ∞,  
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So all the rotated parallel lines converge on a vanishing point (e.g. Vanishing Point 2 in Figure 4) on 

the horizon line h at a distance d tan θθθθ  to the left of the perpendicular lines’ vanishing point.  The 

point is to the left for counter clockwise or positive rotations θ  and to the right for clockwise or 

negative rotations.  Notice that this second vanishing point depends on the distance the view screen is 

from the observer.  This property will be essential for the understanding of the Dürer article below. 

Dürer Table Controversy 

The article “Dürer: Disguise, Distance, 

Disagreements, and Diagonals!” by Annalisa 

Crannell, Marc Frantz, and Fumiko Futamura,
1
 

addresses a controversy over Albrecht Dürer’s 

woodcut St. Jerome in His Study (1514) shown in 

Figure 5.  William Mills Ivins Jr., curator of the 

department of prints at New York's Metropolitan 

Museum of Art from 1916 to 1946, criticized 

Dürer’s use of perspective in the image.  He said, 

“The top of the saint's table is of the oddest 

trapezoidal shape—certainly it is not rectangular.”  

Crannell and company took issue with Ivins’ 

criticism and claimed Dürer was perfectly 

accurate in showing the perspective for a square 

table.  They said, “The oddness that Ivins saw in 

the table wasn't because Dürer was in the wrong, 

but because Ivins was in the wrong, literally: he 

was looking from the wrong place!” 

Figure 7 demonstrates that if a viewer stands 

in the wrong place for such a highly perspective 

image, the objects seem distorted.  The rest of the 

article discusses (but does not explain) where the 

viewer should stand to see the image correctly.   

As shown above in Figure 5, Crannell et al. 

find the vanishing point V for lines perpendicular 

to the plane of the image, in particular, for the left 

and right edges of the table.  They had claimed the table is not rotated relative to the viewer, so that 

the edges would be perpendicular to the plane of the picture.  They then draw a line from the lower 

right corner of the table top A to the upper left corner C and project it to the visual horizon h at the 

second vanishing point labeled Z (Figure 8).  They designate the distance between the two vanishing 

                                                 
1
  8 November 2014: : Math Horizons: : www.maa.org/mathhorizons   

(http://www.maa.org/sites/default/files/pdf/horizons/durer.pdf) 

 

Figure 7    If we stand in front of C, the table does 

not appear to be square—otherwise, how could we 

see the side AB?  (Crannell et al.) 
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points, V and Z, as d.  Finally they say to see the picture properly, the viewer must stand with one eye 

directly in front of the first vanishing point V and a distance d from the picture (Figure 9).  Why? 

  

Figure 8    The diagonal across the top of the table has a vanishing point Z on the horizon.  (Crannell et al.) 

 

 

Figure 9   To look at St. Jerome in His Study so that it appears most three-dimensional, view it with one 

eye in front of the point V, at a distance d from the picture.  (Crannell et al.) 

The fact that the edges of the 

table are perpendicular to the plane 

of the picture (our view screen) 

means our discussion above applies.  

So the rotated line (table diagonal) 

has a vanishing point Z located a 

distance d tan θ from the vanishing 

point V where d is the distance from 

viewer to picture (Figure 10).  The 

assumption that the table is square 

means the angle of rotation for the 

diagonal is θ = 45° so that tan.θ .= 

1 and d tan θ = d.  So if a viewer of 

the picture stands a distance d from 

the picture squarely in front of the 

vanishing point V, then they are in 

the exact location of the “observer” 
 

Figure 10    Dürer’s Table 

TThhee  ttaabbllee  aanndd  bbaacckk  wwaallll  aarree  ppaarraalllleell  ttoo  tthhee  

bboottttoomm  eeddggee  ooff  tthhee  iimmaaggee,,  ssoo  lleefftt  aanndd  

rriigghhtt  eeddggeess  ooff  tthhee  ttaabbllee  aarree  ppeerrppeennddiiccuullaarr  

ttoo  tthhee  ppllaannee  ooff  tthhee  ppiiccttuurree..  
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who generated the lines.  That is, if the objects in the picture were real, then a person standing at the 

indicated location would see the objects just as they were viewed in the picture.  

One minor point.  If the table were not square and had the long side facing front, then the rotation 

of the diagonal line would have been greater than 45° and the tangent greater than 1.  This would 

mean the distance the viewer would have to stand in front of the picture would have to be less than 

the separation between the vanishing points. 

Evelyn Lamb has an amusing blog in her Scientific American Roots of Unity website
2
 about 

touring the Brigham Young University Museum of Art with Annalisa Crannell.  Crannell aligned 

chopsticks over pictures to try to find vanishing points and the proper position to stand to view the 

picture correctly.  When successful, apparently the images almost appeared three-dimensional. 

Perpendicular Assumption 

The assumption that one of the sets of parallel lines is perpendicular to the view screen is 

essential for Crannell’s procedure to work.  In the photo I took of the Washington National Cathedral 

in 2011 shown in Figure 11, none of the lines in the photo were originally perpendicular to the plane 

of the photo, so the viewpoint should not have been in front of one of the two vanishing points.  Of 

course the viewpoint was actually on the bisector of the photo, as shown by the yellow dot. 

 

Figure 11    Rotated, Non-perpendicular Lines 

Note that the red horizon line is slightly below the center of the photograph shown by the green 

dot.  This means that the camera was angled a slight bit upwards.  This is tantamount to saying the 

view screen is slightly tilted away from the vertical.  We shall explore this situation in more depth in 

the following section. 

Rotated Vertical Parallel Lines 

Figure 12 shows a case where the view screen (camera) had been rotated upwards at a 

considerable angle.  The horizon line indicated by the downward slanting ray lines to the pair of 

vanishing points is very far below the view screen.  But the vertical lines following the pillars of the 

cathedral converge at a third vanishing point above the view screen. 

We need to modify our equations to handle the case where xyz-space of Figure 1 has been rotated 

about the x-axis.  Figure 13 shows how we can represent the xz view (Figure 2) with a virtual 

observer standing at (0, 0, 0) but canted back at an angle φ  and shrunk to a height h' = h cos φ.  This 

virtual observer will now be a distance d' = d + h sin φ  from the view screen. 

                                                 
2
  “How to Look at Art: a Mathematician's Perspective”  28 April 2016 

(http://blogs.scientificamerican.com/roots-of-unity/mathematical-perspective-in-art/, retrieved 4/29/2016) 
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Figure 12    Vertical Rotated Parallel Lines Figure 13    Rotated View Screen and xz View 

We can now apply equations (2) to the rotation of the y, z coordinates (x fixed) to yield 

y' = y cos -φ  –  z sin -φ 

z' = y sin -φ  +  z cos -φ  

where the rotation of the y'z' view by φ causes the original yz view to rotate –φ .  Thus we have 

y' = y cos φ  +  z sin φ 

z' = –  y sin φ  +  z cos φ (3) 

So the projection or perspective map becomes 
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We can see what happens to a horizontal straight line that is perpendicular to the x-axis when the 

view screen is rotated counter-clockwise by an angle φ.  Make x and z constant to select a particular 

line and then let y vary.  This has the effect of parameterizing the (x', y', z') line by y.  Then we have 

as y → ∞ (noting that h' = h cos φ. and d' = d + h sin φ are constant), 
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And so the line of vanishing points for the horizontal lines perpendicular to the x-axis (horizon) 

drops vertically below the observer line of sight perpendicular to the view screen by a distance (on the 

view screen) of d'.tan.φφφφ and moves horizontally to the center.   

Now consider what happens to the equations (4) when a rotated vertical line is considered.  Select a 

vertical line by holding x and y constant and letting z vary.  This parameterizes the line by z.  As 
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z.→.∞, X → 0 again, Y = d' again, but this 

time Z → h' + d' cot φ.  But  

 cot φ = tan (90° – φ) 

So the vertical vanishing point occurs at X = 0, 

Z = h' + d' tan (90° – φ).  This is illustrated in 

Figure 14. 

 

 

Figure 14    Rotated View Screen with Vanishing 

Point Locations 

A concrete example of the effects of tilting the view screen (camera) is shown in Figure 15.  The 

center of the observer view point (center of the photo) is shown as a yellow dot.  The horizontal red line 

is the horizon on which lie the vanishing points of the horizontal (rotated) parallel lines.  One of these 

vanishing points is shown as a green dot.  The vertical red line through the center of the photo holds the 

vanishing point for the vertical parallel lines (cathedral columns).  Given the inclination φ of the 

camera, the horizon line is considerably below the center view point. 

Futility Closet Puzzle 

As an application of these ideas about perspective, consider the following puzzle. 

(http://www.futilitycloset.com/2016/04/01/perspecti

ve-11/, retrieved 8/8/16) 

Perspective   
(1 April 2016) 

AB and CD are consecutive ties across a pair of 

railroad tracks that appear to meet at O on the 

horizon, H. If the ties are parallel to the horizon and 

are equally spaced along the tracks, how can we 

draw the next tie in this perspective figure? 

 

Figure 15    Vertical Rotated Parallel Lines 
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Solution 

In the figure, parallel lines meet at the horizon, 

which represents infinity. If all the ties are evenly 

spaced, then the railroad track is a series of 

identical rectangles, and the diagonals of these 

rectangles are parallel. If diagonal BC reaches the 

horizon at P, then the line through D that’s parallel 

to it is PD. That gives us E, the point where the 

next tie meets the left track, and all that remains is 

to draw EF parallel to the horizon. 

(From Ross Honsberger, More Mathematical Morsels, 1991.) 

Based on our discussion above (see Figure 10), this solution makes sense and is quite ingenious. 

Addendum 
2 January 2019 

I read somewhere that a parabola under a perspective map becomes an ellipse.  Certainly the lines 

of the parabola, as they head off to infinity, should converge to a point on the view horizon, and thus 

form a closed curve.  But is it exactly an ellipse?  So with laborious calculations (and my numerous 

arithmetic mistakes) I finally was able to show it was true.  Not to have my efforts go to waste, I 

thought I would include the results as an addendum to this article. 

Lay out a simple parabola on 

the xy-plane (z = 0).  Have the 

view screen rest on the xy-plane at 

the distance y = d from the 

observer.  Then the parabola  

y = x
2
 + d 

will have its vertex at (0,d,0).  The 

perspective map equations become 
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To show the parabola becomes 

an ellipse, as in Figure 16, we want to show 
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where the semimajor axis a = h/2 and the semiminor axis b is yet to be determined.   

Semiminor axis b.  If the figure is to be an ellipse, then the distance b represents the maximum 

distance along the X-axis from the Z-axis.  So we will compute the derivative dX/dZ and set it to 0. 

 

 
 

 

Figure 16  Ellipse as Projected Parabola 
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The derivative vanishes when dx = .  From equation (5) this means 2/dX =  and Z = h/2.  So 

the maximum excursion b also occurs at the center of the putative ellipse, which bodes well for the 

eventual demonstration.   

Thus, taking 2/db =  to be our semiminor axis, equation (6) becomes 
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From equation (5) the left hand side (LHS) becomes 
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which after some tedious arithmetic (and many screw-ups) reduces to 1, which is what we wanted to 

show.  So the perspective view of a parabola is an ellipse. 

(This exercise also gives me confidence that I figured out the correct perspective map equations.) 
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