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I have been reading with interest Paul J. Nahin’s latest book Number-Crunching [1].  On page 29 

and following Nahin presents a problem that he will solve with the Monte Carlo sampling approach.  

Here is his statement of the problem ([1], p.29): 

To start, imagine an equilateral triangle with side lengths 2, as shown in [Figure 1].  If we pick a 

point “at random” from the interior of the triangle, what is the probability that the point is no more 

distant than d = √2 from each of the triangle’s three vertices?  The shaded region in the figure is where 

all such points are located.  There is nothing special about the √2 other than it will make some of the 

theoretical calculations we’ll do, to check the Monte Carlo computer code, particularly simple to 

perform.  We could, however, solve the problem for different values of d.  The exact theoretical answer 

(for d = √2) is 

...1748488.031
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 (1) 

The theoretical calculation of [(1)] requires mostly only high school geometry, plus one step that I 

think requires a simple freshman calculus computation. 

 

Figure 1    The points in the shaded region are all the points within d = √√√√2 

of all three vertices of the equilateral triangle 

I thought I would try to find the analytic solution in 

equation (1).  I believe I succeeded without calculus, unless 

the formula for the area of a sector is considered calculus (see 

Figure 2).  My solution follows on the next page using only 

geometry and the area of triangles and sectors.  It differs from 

the one provided by Nahin in the back of his book which does 

use calculus at one point. 

 

Figure 2    Area of Sector 
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Solution.   So we are interested in finding the ratio of the area of the shaded “triangle” in Figure 1  

and the equilateral triangle. 

We partition the equilateral triangle into 7 

areas created by the intersecting circular arcs of 

radius √2, where area A3 is the desired shaded 

triangle (see Figure 3).  By the nature of all the 

symmetries there are two sets of 3 areas each 

where the areas in each set are all the same and so 

have been labeled with the same subscript.  If we 

let T be the area of the equilateral triangle, then 

T = 3A1 + 3A2 + A3 (2) 

Similarly the partition of the triangle partitions 

each sector (Figure 4).  If S represents the area of 

such a sector, then  

S = A1 + 2A2 + A3 (3) 

and so 

T = 2A1 + A2 + S (4) 

From equation (2) we get 

A3 = T - 3A1 - 3A2 (5) 

Using equation (4) to eliminate A2 in equation (5) 

yields 

A3 = 3S – 2T + 3A1 (6) 

or, evaluating the areas of the sector and equilateral 

triangle, 

A3 = π – 2√3 + 3A1 (7) 

where we recall that the angles in an equilateral 

triangle are each 60° or π/3 radians and the altitude 

of this equilateral triangle is √3.  It remains, then, to 

compute the value of the area A1. 

Area A1 

As shown in Figure 5, drop the perpendicular 

bisector (dashed line) on the side of the equilateral 

triangle opposite the origin.  Every point along this 

line is equidistant from the two vertices defining 

the side of the triangle.  (If we join the point by 

lines to each vertex, we define two congruent right 

triangles (s.a.s), and so the lines (hypotenuses) 

must be the same length.)  This equidistant property 

means the perpendicular bisector intersects the 

third vertex in the equilateral triangle at the origin.  

It also means the point on the bisector that is √2 

from each of the vertices opposite the origin is the 

intersection of the two circular arcs centered at 

 
Figure 3    Partitioned equilateral triangle 

 
Figure 4    Partitioned sector 

 
Figure 5    Triangle T1 
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these vertices.  This √2 distance represents the hypotenuse of a right triangle with one side of length 1 

(since the perpendicular bisects the side of length 2 in half).  Therefore the other side of the triangle is 

also of length 1.  Since the perpendicular bisector is also the altitude of the equilateral triangle, it is of 

length √3, which means the balance of the length of the altitude from the point of intersection of the 

arcs to the vertex at the origin is √3 – 1.   

Consider the shaded triangle T1 in Figure 5 with base the same as the equilateral triangle and top 

vertex at the intersection of the two circular arcs.  To compute the area T1 we need the altitude (blue 

dashed line).  The argument about the congruent right triangles using the perpendicular bisector 

means the two right triangles determined by the bisector and vertices of the equilateral triangle are 

congruent.  This implies the perpendicular bisector also bisects the vertex angle of the equilateral 

triangle and so its value is 30° or π/6 radians.  This implies the altitude of T1 is half the hypotenuse of 

the left hand right triangle, namely (√3 – 1)/2, so 

that the area of T1 is 

T1 = ½  2 (√3 – 1)/2 = (√3 – 1)/2 (8) 

From Figure 6 we see that the triangle T1 can 

be partitioned into half of area A1 and a sector S1. 

so that 

T1 = ½  A1 + S1 (9) 

From Figure 7 we see that the right triangle with 

equal sides implies the angle at its vertex is 45° or 

π/4 radians.  This means the angle defining the 

sector S1 is π/3 - π/4 = π/12.  Therefore,  

S1 = ½ (√2)2 π/12 = π/12 (10) 

So from (8), (9), and (10), we get 

A1 = √3 – 1 – π/6 (11) 

Plugging this value into equation (7) yields 

A3 =  π/2 + √3 – 3 (12) 

Thus the probability of a point randomly falling 

inside the equilateral triangle being less than √2 

from each of the three vertices is A3/T or (since T 

= ½ 2 √3 = √3) 

31
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π  QED 
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Figure 6    Components of T1 triangle 

 
Figure 7    Area of sector S1 


