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Jim Stevenson 

 The following is a continuation of my meditation on the nature of mathematics as I see it.  In 

Part I, I wrote a detailed critique of a March 2014 article I read in Slate attempting to popularize 

mathematical concepts associated with Zeno’s Paradox.
1
  In this Part II, I will try to explain in more 

depth the admittedly philosophical concepts behind my remarks about that article. 

The Reality of Mathematics 

The heavily annotated discussion about Zeno’s paradox and its resolution raised again the issue of 

the “reality” of mathematics, that is, is it something we discover or do we invent it?
2
  This arose 

particularly over the statement in the article that “1/2 + 1/4 + 1/8 + 1/16 ... adds up to 1,” in other 

words, the infinite sum is 1.  What do we mean by is? 

Mathematics as Invention 

The thrust of my annotations appears to weigh in on the side of imaginative invention, especially 

my quote from Bressoud:
3
 “… mathematicians are not using definitions as they are usually 

encountered, as descriptions of entities that already exist. For mathematicians, definitions are 

prescriptive.”  This is also captured well by a quote from G. H. Hardy (Divergent Series, 1949) found 

in Ellenberg’s book:
4
 

It does not occur to a modern mathematician that a collection of mathematical symbols 

should have a “meaning” until one has been assigned to it by definition.  It was not a triviality 

even to the greatest mathematicians of the eighteenth century. They had not the habit of 

definition: it was not natural to them to say, in so many words, “by X we mean Y.” … It is 

broadly true to say that mathematicians before Cauchy asked not, “How shall we define 1 - 1 

+ 1 - 1 + ...” but “What is 1 - 1 + 1 - 1 + ...?” and that this habit of mind led them to 

unnecessary perplexities and controversies which were often really verbal. 

It would be safe to say regarding this issue that most non-mathematicians (students, general 

populace) are at the 18
th
 century stage, at best, whereas virtually all 20

th
 and 21

st
 century 

mathematicians are at the modern stage.  This becomes a barrier for professional mathematicians to 

teach mathematics to novices.  When I was a student starting out in real mathematics in high school, 

especially when I glanced at an appendix in my Algebra II book that discussed infinite series, I 

                                                      
1
  Brian Palmer, “What Is the Answer to Zeno’s Paradox?” Slate, 5 March 2014, 

(http://www.slate.com/articles/health_and_science/science/2014/03/zeno_s_paradox_how_to_explain_the_s

olution_to_achilles_and_the_tortoise.html, retrieved 2/5/15) 
2
  This is actually a long-running question about mathematics.  See, for example, Leslie A.White, “The Locus 

of Mathematical Reality: An Anthropological Footnote,” Philosophy of Science, October, 1947, in James R. 

Newman, The World of Mathematics, Volume 4, George Allen & Unwin, 1956  

(https://archive.org/download/TheWorldOfMathematicsVolume1/Newman-

TheWorldOfMathematicsVolume4_text.pdf) pp.2348-2364. 
3
  Quoting Barbara Edwards, Undergraduate Mathematics Majors’ Understanding and Use of Formal 

Definitions in Real Analysis. The Pennsylvania State University, State College, PA, 1997. PhD thesis 
4
  Jordan Ellenberg, How Not to be Wrong: The Power of Mathematical Thinking, Penguin Press, New York, 

2014, p.47. 
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reacted with disbelief — adding up an infinite number of positive numbers to yield a finite result was 

total nonsense.  To be told it was “true” made me feel stupid for not seeing it.  In fact, at the 5
th
 

century BC stage of Greek mathematics it is nonsense — it literally does not make sense.  It took 

mathematicians some 2000 years to make sense of it, that is, make up a meaningful way to assign a 

finite value to an infinite sum.  I only came to terms with the astounding statements in mathematics 

when I realized they ultimately came from the minds and imaginations of people and were not 

particularly evident without instruction. 

If mathematical concepts were made up, why believe them?  OK, what do we mean by believe?    

Well, “accept” might be a better term than “believe.”  Hovering around this discussion is also the 

word “true,” that is, how can we accept mathematical statements as being true.   

Basically a system of rules was established by the Greek mathematicians that were consolidated 

by Euclid (fl. 300 BC) into his books called the Elements.  It provided a system of deductive proof 

(mostly involving statements about plane geometry) that would establish the truth of a new statement 

based on the (proved = derived) truth of previous statements and on a set of axioms.  The axioms 

were a small set of “unproved” assumptions, that is, these were statements we just accepted (as 

obvious?) and were not the consequence of a deductive proof.  So everything ultimately derives from 

axioms.  Mathematics is just one massive collection of deductive chains of reasoning from a (small) 

basic set of statements.   

We would like to say a mathematical statement is true if it can be proved, that is, derived via one 

of these chains of reasoning.  There are some other ways of defining true statements.  One way comes 

from the concept of “truth tables” that I won’t go into.  Another (weaker) way is via a “conjecture.”  

This is a statement that mathematicians believe to be true, but they haven’t figured out a proof yet.  

An example is the famous Goldbach's conjecture, which states that every even integer greater than 2 

can be expressed as the sum of two primes (e.g. 8 = 3 + 5, 12 = 5 + 7, 20 = 3 + 17 = 7 + 13 , …).   

So we at least want all statements derived (proved) from axioms to be true.  A set of axioms is 

said to be consistent if only true statements can be derived from them.  If a false statement 

(contradiction) could be derived (proved), then it is possible to show any statement can be derived 

from the axioms, and so the whole effort is worthless, that is, we don’t know what is true or false 

from a proof.   

On the other hand, it would also be great if we could know that all true statements (determined by 

whatever means) could be derived from our set of axioms.  Such a set of axioms with this property is 

said to be complete: all true statements (however arrived at) can be proved from these axioms.  We 

just saw that an inconsistent set of axioms is complete, since any statement, true or false, can be 

derived from them.   

The great Incompleteness Theorem of Kurt Gödel (1931)
5
 essentially says any set of axioms 

rich enough to produce the rules of arithmetic cannot be both consistent and complete, that is, there 

will always be a statement P that cannot be derived from the axioms.  Astoundingly, that statement P 

is effectively “This set of axioms is consistent.”  (The self-referential nature of the statement is not an 

accident.)  So not only can we not prove (using the given set of axioms) that all true statements that 

exist can be derived from the axioms, we cannot even prove (again using the given set of axioms) that 

this set of axioms will only yield true statements. 

The bottom line here is that the ultimate goal of mathematics — to prove its own consistency, that 

only true statements can be derived — is doomed to failure.  So the idea that mathematically derived 

                                                      
5
  For the best introduction see Gödel’s Proof by Ernest Nagel and James Newman (1958).  A more modern 

treatment can be found in Torkel Franzen, Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse, 

2005, with a reference to the use of  Cantor’s diagonalization argument on p. 70. 
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statements are to be believed or accepted as true is not as ironclad as we would like.  But so far (over 

3000 years) we have not encountered any inconsistencies (contradictions), unless you count 

paradoxes.  But then, so far, all paradoxes have been resolved by further extensions to yield consistent 

mathematical constructs. 

Mathematics as Discovery 

Mathematics is different from the physical sciences in that it does not evolve through physical 

experimentation and observation of subsequent behavior.  It seems to proceed more from the 

imagination and creativity of human minds, as suggested in the previous section.  I certainly am in 

sympathy with this idea, as argued in my comments to the Zeno Paradox article.  On the other hand, 

there is something more constrained about mathematics compared with say an abstract painting or a 

piece of music (even though those media have their own constraints). 

Platonism 

Mathematical creativity is not unfettered, but, as we saw, must proceed along rigid lines of logical 

deduction.  (There is a lot of discussion about mathematical ideas that spring suddenly into the 

mathematician’s mind, which must then be anchored to the deductive chains of existing mathematical 

knowledge.)  Given the constraints on mathematical development, it is perhaps not surprising that 

often mathematicians arrive at the same mathematical construct basically independent of one another.  

Usually these parallel “discoveries” are close in time (e.g. the calculus of Newton and Leibniz), 

suggesting that the body of mathematics has progressed to a point where the next level becomes more 

obvious.  Other “discoveries” have been more spread out in time and among different cultures, such 

as the so-called Pythagorean theorem (the sum of the squares of the sides of a right triangle is equal to 

the square of the hypotenuse or a
2
 + b

2
 = c

2
), which showed up in Babylonia long before it was 

associated with Pythagoras (of course this also gets into the issue of “diffusion” vs. “independent 

discovery”). 

This suggests that there is something permanent and “pre-existing” about mathematics, which is 

independent of the individual human mind.  Given enough time, intelligence, and mathematical 

progress, the next phases of mathematical concepts are predetermined.  From this view mathematics 

is not just the random creation of human imagination; it is something that the human mind is disposed 

to uncover, given enough support.  It is there to discover, not to invent. 

This notion of a pre-exiting, ultimate form of something independent of human rational activities 

that is manifested to us tangibly in a number of possible ways is the essence of Plato’s (c.428 – c.348 

BC) concept of Forms developed in his book The Republic.  As such, it is referred to as Platonism.  A 

number of mathematicians have professed to hold this platonic view of mathematics, for example, 

Edward Frenkel,
6
 Roger Penrose,

7
 and David Mumford.

8
  As Mumford formulates it, it is “The belief 

that there is a body of mathematical objects, relations and facts about them that is independent of and 

unaffected by human endeavors to discover them.” 

Mathematics and Self-Organization 

I have to admit that I am shifting from my unfettered imagination view of math and moving more 

towards the platonic view.  But I have a slightly different take on it.  I view the logical “if …, then 

…” connections that make up a proof and form the chains of inference that constitute the body of 

mathematics akin to the chemical linkages and interactions that lead to the molecular structures of 

living organisms.  That is, if we raise the question of where the platonic Form of the body of 

                                                      
6
  Edward Frenkel, Love & Math: The Heart of Hidden Reality, Basic Books, 2013, p. 234 

7
  Referenced in Frenkel’s book as Roger Penrose, The Road to Reality, Vintage Books, 2004, p.15. 

8
  David Mumford, “Why I am a Platonist,” Newsletter of European Math. Society, December 2008, pp. 27-30 

(http://www.dam.brown.edu/people/mumford/beyond/papers/2008e--Platonism-EMS.pdf) 
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mathematics came from, we are not far from the questions about where living organisms come from.  

A creationist view would say the body of mathematics Form came fully developed from a creator.  

An evolutionist view would claim the Form did not pre-exist, but was built up in an incremental 

fashion.  Pure evolution would talk about randomness and natural selection, which is basically a trial-

and-error process trying to optimize fitness criteria.  This does not quite suit our situation. 

Recent developments in genetic evolution, however, are actually tending away from a totally 

random view of the subject.  The ideas of complexity theory, involving many interacting autonomous 

agents that lead to organized outcomes (self-organization), have been applied to organic chemistry at 

the molecular level.  A marvelous book by Peter M. Hoffmann, Life’s Ratchet,
9
 shows in detail how 

organic molecules, following the laws of chemical interactions, can self-organize into “living” 

entities.  So the final high-level organism is pre-ordained from the lower-level rules, and is not a 

random outcome.  In a sense, then, the final organism already “exists,” is inherent, in the low-level 

molecules.  This is analogous to the final picture in a jig saw puzzle that “exists” inherently in the 

disassembled pieces.  

I view the evolution of the body of mathematics in the same way.  It will be incrementally 

revealed to us, not in a random or arbitrary way, but in a pre-determined form dictated by the 

interlocking chains of deductive inference.  Of course, this also means that without the human mind 

to perform these deductions, there would be no mathematics, contrary to the platonic view. 

Mathematics and Physical Reality — a Mystery 

To me, there is something about this mathematical reality that is different from physical reality.  I 

believe the sum of an infinite series is a mentally arrived-at construct, however pre-determined, and 

not just a physical “is”.  But that means we must confront a mystery.  If mathematics does not inhere 

in physical reality but is a human mental overlay, again however pre-determined, then why does it 

capture physical behavior so well?   

One answer given recently by Max Tegmark is “that our reality isn’t just described by 

mathematics – it is mathematics.”
10

  But we will consider less extreme notions. 

Eugene Wigner 

Much has been written about this issue of mathematics and physical reality, especially by Eugene 

Wigner in his famous 1960 article
11

 where he says “The first point is that the enormous usefulness of 

mathematics in the natural sciences is something bordering on the mysterious and that there is no 

rational explanation for it.”   

Wigner first addresses the question of what is mathematics: 

The principal emphasis is on the invention of concepts. Mathematics would soon run out 

of interesting theorems if these had to be formulated in terms of the concepts which already 

appear in the axioms. Furthermore, whereas it is unquestionably true that the concepts of 

elementary mathematics and particularly elementary geometry were formulated to describe 

entities which are directly suggested by the actual world, the same does not seem to be true of 

the more advanced concepts, in particular the concepts which play such an important role in 

physics. … Most more advanced mathematical concepts, such as complex numbers, algebras, 

                                                      
9
  Peter M. Hoffmann, Life’s Ratchet: How Molecular Machines Extract Order from Chaos, Basic Books, 

2012 
10

  Max Tegmark, Our Mathematical Universe: My Quest for the Ultimate Nature of Reality, Vintage Books, 

2014, p.254. 
11

  Eugene Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences," in 

Communications in Pure and Applied Mathematics, vol. 13, No. I (February 1960) 
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linear operators, Borel sets — and this list could be continued almost indefinitely — were so 

devised that they are apt subjects on which the mathematician can demonstrate his ingenuity 

and sense of formal beauty. … The great mathematician fully, almost ruthlessly, exploits the 

domain of permissible reasoning and skirts the impermissible. That his recklessness does not 

lead him into a morass of contradictions is a miracle in itself. 

Wigner seems to be leaning toward the imaginative invention school here and not the Platonists. 

Addressing the role of mathematics in physical theories, Wigner has this to say: 

It is true, of course, that physics chooses certain mathematical concepts for the 

formulation of the laws of nature, and surely only a fraction of all mathematical concepts is 

used in physics. It is true also that the concepts which were chosen were not selected 

arbitrarily from a listing of mathematical terms but were developed, in many if not most 

cases, independently by the physicist and recognized then as having been conceived before 

by the mathematician. It is not true, however, as is so often stated, that this had to happen 

because mathematics uses the simplest possible concepts and these were bound to occur in 

any formalism. As we saw before, the concepts of mathematics are not chosen for their 

conceptual simplicity … but for their amenability to clever manipulations and to striking, 

brilliant arguments. … 

It is difficult to avoid the impression that a miracle confronts us here, quite comparable in 

its striking nature to the miracle that the human mind can string a thousand arguments 

together without getting itself into contradictions, or to the two miracles of the existence of 

laws of nature and of the human mind's capacity to divine them. 

Further Examples: Stewart Shapiro12 

Ohio State University philosopher Stewart Shapiro relates a puzzling experience that a friend 

once encountered in a physics lab.  

“The class was looking at an oscilloscope and a funny shape kept forming at the end of 

the screen. Although it had nothing to do with the lesson that day, my friend asked for an 

explanation. The lab instructor wrote something on the board (probably a differential 

equation) and said that the funny shape occurs because a function solving the equation has a 

zero at a particular value. My friend told me that he became even more puzzled that the 

occurrence of a zero in a function should count as an explanation of a physical event, but he 

did not feel up to pursuing the issue further at the time. 

“This example indicates that much of the theoretical and practical work in a science 

consists of constructing or discovering mathematical models of physical phenomena. Many 

scientific and engineering problems are tasks of finding a differential equation, a formula, or 

a function associated with a class of phenomena. A scientific ‘explanation’ of a physical 

event often amounts to no more than a mathematical description of it, but what on earth can 

that mean? What is a mathematical description of a physical event?” 

What right do we have to presume that the natural world will hew to mathematical laws? And 

why does the universe oblige us so graciously by doing so? Repeatedly, mathematicians have 

developed abstract structures and concepts that have later found unexpected applications in science. 

How can this happen? 

                                                      
12

  Taken from the article “Augury” in Futility Closet, 4 September 2014, 

http://www.futilitycloset.com/2014/09/04/augury/, retrieved 2/6/16 
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“It is positively spooky how the physicist finds the mathematician has been there before him or 

her.”  

 — Steven Weinberg 

“I find it quite amazing that it is possible to predict what will happen by mathematics, which is 

simply following rules which really have nothing to do with the original thing.”  

 — Richard Feynman 

“One cannot escape the feeling that these mathematical formulae have an independent existence 

and intelligence of their own, that they are wiser than we are, wiser even than their discoverers, 

that we get more out of them than was originally put into them.”  

 — Heinrich Hertz 

“The miracle of the appropriateness of the language of mathematics for the formulation of the 

laws of physics is a wonderful gift which we neither understand nor deserve.”  

 — Eugene Wigner 

(From Stewart Shapiro, Thinking About Mathematics, 2000; also his paper “Mathematics and 

Reality” in Philosophy of Science 50:4 [December 1983].) 

More Than Descriptive 

There is another aspect of the wonder of the mathematical description of reality (often referred to 

as knowledge representation by the old artificial intelligence community of the 1980s) that is rather 

profound (and suggested by the Feynman quote above).  A while ago I did a detailed explanation of 

how Kepler’s Laws were equivalent to Newton’s Law of Gravity, given Newton’s Laws of Motion.
13

  

All the laws discussed had mathematical representations, even though they were referring to physical 

situations.  And the derivations of the relationships between these laws, including the equivalences, 

were all done solely with mathematics and without any physical reasoning.  The physical phenomena 

that Kepler observed and codified mathematically in his laws turn out somehow to be inherent in the 

mathematical properties of Newton’s laws (of motion and of gravity), which also represent physical 

phenomena (see Figure 1). 

                                                      
13

  This section is taken virtually verbatim from that previous article, “Kepler’s Laws and Newton’s Laws.”. 

 
Figure 1    Mathematical Representation of Physical Reality 
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I remember when I worked at the Geophysical Fluid Dynamics Laboratory there was an 

oceanographer who wrote down a particular form of the Navier-Stokes equations that represented the 

fluid motion of certain ocean regions.  He manipulated the equations and produced successive 

transformations into alternative forms.  When I asked him to show me the mathematical derivation, he 

admitted he did it “physically,” that is, each term in the original equation had a physical meaning to 

him and he knew physically how these terms transformed into other terms that represented physical 

phenomena.  In other words, to him the partial derivatives and other mathematical symbols in the 

equations were just labels or names of physical entities and he moved from one physical entity to the 

next using physical reasoning.   

The derivation I did of the equivalence of Kepler’s Laws and Newton’s Law of Gravitation was 

not like that.  It was all done mathematically.  There was no physical mechanism indicated that would 

show how these two Laws were equivalent, only mathematical manipulations.  So how is it that the 

mathematical if-then deductions relating purely mathematical entities mirror some invisible physical 

cause-and-effect logic that drives the physical results?  “Mirror” is perhaps the wrong word, since a 

priori the mathematical deductive path is totally independent of the physical causal path.  This is truly 

amazing. 

Intelligent Equations 

There is one other mysterious tie between the mathematical world and the physical world, 

suggested by the Heinrich Hertz quote above.  The discovery of a mathematical representation of 

physical reality through some equations not only ties together currently observed phenomena into a 

logical whole, via the mathematics, but buried in the equations themselves are mathematical 

consequences that predict corresponding physical phenomena. 

For example, when Maxwell produced his equations uniting electricity and magnetism into one 

electromagnetic phenomenon, a mathematical consequence was that the corresponding fields satisfied 

a wave equation.  This implied there must be waves associated with electromagnetic disturbances, 

and sure enough Heinrich Hertz performed experiments to prove their existence.  There are many 

more such examples as indicated by Tom Siegfried:
14

  

General relativity [equations] provided more surprises than just gravity waves, for instance. 

Black holes, gravitational lensing and even, in a way, the expansion of the universe emerged 

from Einstein’s equations before any astronomer observed them. Quarks, the constituents of 

protons and neutrons, showed up in Murray Gell-Mann’s math before evidence for their 

existence showed up in particle accelerators. And antimatter, the fuel of science fiction’s 

future, became science fact in Paul Dirac’s mathematical mind before experimentalists 

noticed antiparticles in cosmic rays. 

This behavior certainly lends credence to Tegmark’s view above that physical reality is 

mathematics.  But that still seems a bit too glib for my tastes, and so furthers the mystery.   

Basis for Mathematical Representation of Physical Reality 

Returning to Zeno, we see that there is the mathematical issue of the meaning of summing an 

infinite number of positive quantities to yield a finite result.  But there is also the issue of what does 

the mathematical construct have to do with the physical situation?  We are making a lot of 

assumptions when we form the mathematical representation of the physical problem.  We abstract the 

race course as a 1-dimensional geometric straight line (with no width) — often referred to as the 

continuum.  We associate positions on the race course with points on the line.  And we associate 

distances between positions with lengths of line segments between points on the line.  So we are 

                                                      
14

   Tom Siegfried,  “Gravity Waves Exemplify The Power Of Intelligent Equations”, February 16, 2016, 

(https://www.sciencenews.org/blog/context/gravity-waves-exemplify-power-intelligent-equations) 
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claiming that the mathematical interpretation of the geometric notions of line, points, and lengths is 

sufficient to explain the physical situation of the race course. 

But immediately we are faced with questions about the line or continuum that developed into the 

late 19
th
 century and early 20

th
 century mathematical field of point-set topology.  The initial question 

that arose during the Middle Ages and Renaissance was whether there was a smallest length between 

points on the line.  That is, is the line infinitely divisible into smaller and smaller intervals, or is there 

a smallest interval?  Or more particularly, are there an infinite number of points in a line segment?  

And if a point has no length, how can a (finite or infinite) sum of points add up to a positive length for 

the line segment?  This became the issue of infinitesimals, which were defined by the contradictory 

statement that they were infinitely small, positive values.  It took a couple of hundred years of 

mathematical development to clarify the situation, or at least establish a consistent logical 

foundation.
15

 

This issue of mathematical representation of physical reality is extremely complex.
16

  In fact, the 

most difficult part of probability and statistics is not the mathematics but rather its interpretation of 

physical reality.  I see a lot of recommendations that non-math students, who are being taught the 

most “useful” basics, should be taught a fair amount of probability and statistics, since it arises 

frequently in our daily lives.  But the large number of controversies that develop around any such 

probability issue indicates that finding a consensus on the interpretation of the math is very difficult, 

certainly not something that a beginning student should be plagued with.  Actually, even in non-

probability and statistics situations, such as exponential growth, fluid motion, mechanical statics, etc. 

how the mathematics should be applied and interpreted for a given physical situation is often the most 

difficult part of the problem.  Part of the reason for this difficulty is the fact that mathematical 

deductive reasoning is different from physical causal reasoning, as discussed above.  So it is often not 

clear how the two should be married. 

So the statement that Zeno’s Paradox is resolved because an infinite sum can have a finite result 

is rather problematic and hides a wealth of issues, even to the point of including the issue of what is 

an “explanation”?  But that is a question for another time. 

© 2018 James Stevenson 

 

                                                      
15

   A recent take on the problems associated with this mathematical representation of reality, even to the point 

of resurrecting Zeno, is a series of articles by John Baez on “Struggles with the Continuum”, starting 1 Sep 

2015 (https://www.physicsforums.com/insights/struggles-continuum-part-1/).   As Baez says, “But even if 

we take a hard-headed practical attitude and leave logic to the logicians, our struggles with the continuum 

are not over. In fact, the infinitely divisible nature of the real line—the existence of arbitrarily small real 

numbers—is a serious challenge to almost all of the most widely used theories of physics.”  And he 

proceeds to show in the next parts of his series what these challenges are. 
16

  For a very basic example, try explaining to an elementary school pupil why an area problem involves 

multiplication. 


