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Complex Numbers – Geometric Viewpoint   
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James Stevenson 

How we could have gotten here.  We could arrive at the notion of complex numbers via the 

historical path of how to solve polynomial equations in real numbers.  This would entail our having 

introduced the notion of extending our rational number system (field) by adding irrational numbers, 

such as 2 , and showing we still have all the properties of a field.  (The new numbers would be of 

the form a = p + q 2  where p and q are rational numbers.)  But this piecemeal, one-at-a-time 

approach is inadequate (e.g., 3 , another irrational number, does not belong to the field extension 

with 2 , that is, there are no rational p, q such that 3  = p + q 2 ), and so we had to consider 

decimal expansions as a more encompassing way to obtain all the real numbers, thus leaving behind 

for the moment the idea of simple field extensions.  In the course of solving polynomial equations in 

the reals, especially via the quadratic formula, we arrive at solutions involving the square root of 

negative numbers, in particular 1− .  So we return to the idea first encountered with 2  by 

appending 1−  to the rest of the numbers (reals in this case) and showing we still have a number 

system with addition and multiplication and all the usual properties of a field.   

Complex Number Definition 

 We shall define a complex number z to be of the form 

z = a + i b 

where a and b are real numbers and i = 1− , that is, i
2
 = –1.

1
  We call a the real part and b the 

imaginary part of z.  We designated the set of real numbers by � (and the rationals by �, for 

quotients), so we shall designate the set of complex numbers by �.  Notice that when the imaginary 

part is 0, we only have a real number.  So the reals � can be thought of as contained in the complexes 

� (� ⊂ �) in this way.   

We now show  that � satisfies all the properties of a number system (field) the same way we did 

when we added 2  to the rationals �.  The critical property is that the addition, subtraction, 

multiplication, and division of two complex numbers is also a complex number.  We treat i like any 

other number for addition and multiplication, using the fact that i
2
 = –1. 

If we set z1 = a + ib and z2 = c + id, then  

Addition:  z1 + z2 =  (a + ib) + (c + id) = (a + c) + i(b + d)  ∈ � (1) 

Subtraction:  z1 – z2 =  (a + ib) – (c + id) = (a – c) + i(b – d)  ∈ � (2) 

 Note, as with real subtraction,  z1 – z2 = z1 + (– z2) 

Multiplication: z1 × z2 =  (a + ib) × (c + id) = (ac – bd) + i(ad +bc)  ∈ �  (3) 

                                                      
1
  i certainly is not a real number, since the square of no real number can be negative.  So this is a new beast, 

which we just tack onto the reals and see how far we can get using all the same operations as if everything 

were a real number.  Recall that as far as the Greeks were concerned, 2 was a new beast in their day —

which they ignored.  That is, 2 was never a number (it was not rational), but rather the length of a line in a 

geometric figure: the hypotenuse of a right triangle with legs of length 1.. 
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We will usually suppress the multiplication sign × and write z1 × z2 = z1 z2. 

Division: (a) =
2
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As usual, we assume z2 is not zero, which is equivalent to saying c and d cannot 

both be zero, and so c
2
 + d

2
 ≠ 0. 

With these expressions and the fact that 0 = 0 + i0 and 1 = 1 + i0 are still the additive and 

multiplicative identities in �, it is easy to show � inherits all the field properties from �. 

Clearly this is far more complicated than adding and multiplying rationals.  To help us understand 

the implications of these operations we turn to the geometric representation.   

Geometric Representation 

Just as we used a line to illustrate the behavior of 

integers, rationals, and then real numbers, so we turn to 

another geometric object, the plane.  Every complex number 

z = x + iy  is determined by its real and imaginary parts x, y.  

These two real numbers can be used as the coordinates of a 

point in the plane (Figure 1).  This is called the rectangular 

coordinate representation of the complex number z.   

As shown in the figure, we can also indicate the 

complex number by a vector with components x, y.  We 

represented real numbers along the number line also by 

vectors, initially emanating from the zero point.  The point 

in the plane where the real and imaginary axes cross, the origin, has coordinates (0, 0) and is the 

analog of zero on the real line.     

Note also the fact that � ⊂ � is 

represented geometrically by designating the 

horizontal axis as the real number line, which 

corresponds to complex numbers where the 

imaginary part y is 0. 

Now let us look at what happens 

geometrically when we perform addition and 

multiplication of complex numbers. 

Addition and Subtraction 

Looking at Equation (1) for addition and 

interpreting the complex numbers as vectors we 

see from Figure 2 that adding two complex 

numbers involves the “head-to-tail” addition of 

vectors.  That is, parallel translate the second 

vector until its tail coincides with the head of 

the first vector.  Then the resulting sum is the 

new vector with tail coinciding with the tail of 

 
Figure 1    Rectangular Coordinates 

 
Figure 2    Complex Addition (Parallelogram Law) 
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the first vector and head coinciding with the head of the second.  The picture of this operation forms 

the shape of a parallelogram and so is designated the parallelogram law of vector addition 

(mentioned by Newton in his Principia).   

Since Equation (2) shows subtraction of complex numbers is the same as adding the negative of 

the second to the first, we can use the parallelogram law for subtraction, where first we flip the 

second vector 180º and add to the first as before. 

Multiplication and Division 

Multiplication by i.  The expression for 

multiplication in Equation (3) is bad enough, but 

the expression for division in Equation (5) 

appears impenetrable.  Let’s first take a simple 

case of multiplying by i. Figure 3 shows that 

multiplication by i rotates the vector 

representation of the complex variable 90º 
counterclockwise.  (We tip the green rectangle 

over on its long side to yield the red rectangle.  

Since the corners of a rectangle are all 90°, this 

means the corresponding diagonal was also 

rotated 90°.)  So a second multiplication rotates 

90º more or 180º in all.  But that is consistent 

with i
2
 = -1.  That is, multiplying a vector by -1 

is equivalent to flipping the vector 180° which 

corresponds to the negative of the vector.   

It is remarkable to notice the parallels.  When we introduced -1 to generate the negative integers 

and extend the counting numbers to all the integers, we reduced the strangeness of multiplying a 

number by -1 to flipping the vector representing the number’s position on the number line (a 180° 

rotation).  Similarly, we are introducing i and adding it to the reals to obtain the complex numbers, 

and again multiplying a complex number by this new number i is equivalent to another rotation, this 

time 90°.  Moreover, as before the multiplication by i includes the previous multiplication by -1. 

General complex multiplication.  But now we 

need to understand what happens when we multiply by 

any complex number and not just i.  In order to get a 

picture of what might be happening, we need to 

consider yet another representation for a complex 

number in the plane.  It is called the polar coordinate 

representation of the complex number z and is shown 

in Figure 4.  In some ways it more closely captures the 

vector representation since it assigns a length and 

direction to the complex variable.  From Figure 4 we 

see that the point (x,.y) corresponding to the complex 

variable z is a distance r from the origin and the line 

from the point to the origin makes an angle θ  with the 

real axis.  These two numbers uniquely determine the point and are called its polar coordinates. 

For a complex variable z there is some additional terminology.  |z| = r = 
22

yx +  is called the 

modulus of the complex variable z.  arg z = θ  is called the argument of the complex variable z.  

Unfortunately, in order to go back and forth between rectangular and polar coordinates, we need 

 
Figure 3    Multiplication by i 

 

Figure 4    Polar Coordinates 
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to introduce some concepts from trigonometry.  We shall try to keep it to a minimum.  As shown in 

Figure 4, the relationship between the two coordinate systems is via the two trigonometric functions 

sine and cosine of the angle θ  and defined by the equations cos θ  = x/r and sin θ  = y/r.  The more 

direct way to show the transformation is  

       x = r cos θ  

       y = r sin θ  (6) 

From the Pythagorean Theorem we have 

r
2
 = x

2
 + y

2
 = r

2
 cos

2
 θ  + r

2
 sin

2 θ  = = r
2
 (cos

2
 θ  + sin

2 θ ) 

which implies  

cos
2
 θ  + sin

2 θ  = 1 

In order to “hide” the trig functions and to emphasize r and θ, we shall write the polar coordinate 

representation of a complex variable z as 

z = r E(θ)  where  E(θ) = cosθ  + i sinθ  (7) 

Now we are ready to address complex multiplication.  Let z1 = a + ib = r1 E(θ1) and z2 = c + id = 

r2 E(θ2), then  

z1 z2 = r1 E(θ1) r2 E(θ2) = r1 r2 E(θ1)E(θ2) 

Now  

E(θ1)E(θ2) = (cos θ1 cos θ2 – sin θ1 sin θ2) + i (sin θ1 cos θ2 + cos θ1 sin θ2) 

This looks formidable, but in fact it represents a basic trigonometric identity, derived in Figure 5.   

 

Figure 5    Proof of Trigonometric Sum of Angles Identities 

Rectangular to Polar Coordinate 

Transformation 
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Namely,  

E(θ1)E(θ2) = cos (θ1 + θ2) + i sin (θ1 + θ2) = E(θ1 + θ2)  

A function that satisfies  

E(θ1)E(θ2) = E(θ1 + θ2) (8) 

is said to satisfy the exponential property.  (This is made more explicit below on p.6.) 

We can view the multiplication by i in terms of polar coordinates as follows.  

i = 0 + i 1 = cos 90° + i sin90° = E(90°) 

So for any complex number z = r E(θ), 

i z = E(90°) r E(θ) = r E(90° + θ) 

which is a counterclockwise rotation of 90° of the original complex variable z, as shown before.   

In general we have for complex multiplication 

         z1 z2 = r1 r2 E(θ1)E(θ2) = r1 r2 E(θ1 + θ2) (9) 

Complex multiplication, therefore, involves multiplying the moduli of the two numbers and adding 

their arguments, which amounts to rotating the vector associated with z1 by an amount θ2 = arg z2 and 

changing the length (modulus) of z1 by the multiple r2 = modulus of z2.  In particular, z
n
 = r

n
E(nθ). 

This is a bit difficult to visualize, so we will look at a number of examples. 

Geometric examples.  We shall consider some plots of complex polynomials, that is, 

polynomials of the form 

P(z) = an z
n
 + an-1 z

n-1
 + … + a1 z + a0 

where the coefficients a0, a1, …, an are complex numbers (possibly zero).  If z = r.E(θ ), then z
n
 = 

r
n
.E(nθ ) and P(z) takes the form 

P(z) = an r
n
.E(nθ ) + an-1 r

n-1
.E((n-1)θ ) + … + a1 r.E(θ ) + a0 

Consider the effect of adding each additional term in the polynomial.  If z = r.E(θ ), then z
n
 = 

r
n
.E(nθ ) means that not only does the power of a complex variable have a modulus of the same 

power, but as z = r E(θ ) traverse a circle of radius r (θ varies from 0° to 360°), z
n
 whips around a 

circle of radius r
n
 n times.  So we are essentially successively adding the effects of circles of 

increasing radii and rapidly turning arguments. 

Figure 6 represents a plot of the quartic polynomial P(z) = z
4
 + z

3
 + z

2
 + z + 5, where all the 

coefficients are real and equal to 1, except the constant term a0 which is equal to 5.  The values of z 

sweep out a circle of radius 1.5 and are represented in green in the plot.  The corresponding P(z) 

values are shown in red.  For large enough modulus |z| the effect of the leading 4
th

 degree term is 

evident in the four loops in the plot as z makes one circuit.  As r = |z| shrinks, the loops coalesce into a 

curve looping more tightly around the constant term a0 (5) represented by the large black dot in the 

plot.  (Figure 7 shows the result of shrinking |z| from 1.5 to 1.3) 

Exponential Property 
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A particular value of z was chosen with 

argument about 5°.  It is the small green dot on 

the green z-circle.  The trail of small black dots 

represent the values of each z
k
 term in the 

polynomial.  They are shown residing on the 

(light gray) circle this term traverses k times as 

z traverses its circle.  This z
k
 circle is centered 

on the value from the previous z
k-1

 circle for |z| 

= 1.5 and arg z ≈ 5°. 

Figure 8 represents a similar plot of a 

complex cubic polynomial with one complex 

coefficient, namely, P(z) = 2i.z
3
 + z

2
 + 5 z + 5.  

A simpler point was chosen for the single 

evaluation, namely, |z| = 1.5 and arg.z = 0°.  

This shows the simple progression of the 

successive terms in the polynomial as they are 

added.  The effect of the multiplication by i is 

what we expect, namely, a counterclockwise 

90° change in direction for the last term in 

polynomial. 

Exponential Representation (Advanced) 

Euler Formula.  We are going to take the representation of a complex number given in equation 

(7), z = r E(θ)  where  E(θ) = cosθ  + i sinθ ,  a step further.  From now on we will consider the angle 

θ  given in radians instead of degrees, in order to be able to use the calculus.  This means expressions 

such as rθ  measure distance around a circle of radius r.  Letting dE/dθ represent the derivative of E 

with respect to θ, we have 

dE/dθ  =  -sinθ  + i cosθ  = i E(θ) 

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

 a0

 P(z0),  arg z0 = 0

 z
 P(z)

P(z) = a4z
4
 + a3z

3
 + a2z

2
 + a1z + a0

a4 = (1, 0), a3 = (1, 0), a2 = (1, 0)

a1 = (1, 0), a0 = (5, 0)

|z| = 1.5

z

P(z)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

-16 -12 -8 -4 0 4 8 12 16

 a0

 P(z0),  arg z0 = 0

 z
 P(z)

P(z) = a4z
4
 + a3z

3
 + a2z

2
 + a1z + a0

a4 = (1, 0), a3 = (1, 0), a2 = (1, 0)

a1 = (1, 0), a0 = (5, 0)

|z| = 1.3

z

P(z)

 
Figure 6    Plot of complex polynomial  P(z) = z

4
 + z

3
 

+ z
2
 + z + 5 for |z| = 1.5 and arg z ≈≈≈≈ 5° 

Figure 7    Plot of complex polynomial  P(z) = z
4
 + z

3
 + 

z
2
 + z + 5 for |z| = 1.3 and arg z ≈≈≈≈ 5° 
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Figure 8    Plot of complex polynomial  P(z) = 2i  z
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Now we know from calculus with real variables that a function y = f(θ) with derivative  

dy/dθ  = a y 

is of the general form  

y = y0 e
aθ

 

where y0 is some constant, namely the value of y when θ = 0.  We shall assume y0 = 1, since E(0) = 1.  

Then, setting a = i, it seems reasonable to define  

 e
iθ

  =  E(θ) (10) 

The exponential property for E, equation (8), gives us the usual expression for exponentials 

e
i(θ + φ)

 = E(θ + φ) = E(θ) E(φ) = e
iθ 

e
iφ
 

So now the geometric representation for a complex number z, given in equation (7), becomes 

 z = r e
iθ

   where  e
iθ

  = cosθ  + i sinθ        (Euler Formula) (11) 

It turns out the legerdemain applied above to yield the Euler formula for the exponential is 

reinforced by complex power series.  That is, if we take the usual real power series for e
x
 and 

substitute ix for x, we get the power series for cos x plus i times the power series for sin x, namely the 

Euler formula.  This approach involves totally different arguments and goes too far afield for the 

current paper, but the corroboration reinforces the reasonableness of the definition in equation (10).   

Still this definition of e
iθ

 is a far cry from our original notion of exponentiation.  It is amazing that 

it still preservers the properties we associate with exponentiation, but the physical meaning for the 

complex exponentiation is very different from the real version. 

Complex Exponentiation.  Since we have come this far we might as well take the next step.  

From calculus for real variables we have that the natural logarithm, ln x = loge x, is the inverse 

function to the exponential function e
x
, that is, y = ln x if and only if x = e

y
.  This means the Euler 

formula can be written z = r e
iθ

 = e
ln r

 e
iθ

.  If we make the following definition,  

 e
x + iy

  =  e
x
 e

 iy
 (12) 

then we have defined raising e to a complex power z = x + i y.  Thus 

w = e
z
 = e

x
 e

 iy
 where  x = ln |w| and y = arg w. 

We can complete the circuit by defining the complex logarithm as the inverse function to e
z
 as 

z = log w = ln |w| + i arg w 

Actually there are some issues here, since e
z
 is not one-to-one on the complex plane (it takes on the 

same values when multiples of 2π are added to its argument y).  This leads to some fascinating 

developments where the complex plane is expanded to the notion of a Riemann surface.  But that is 

more than enough for now. 

© 2019 James Stevenson 
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