The Diluted Wine Puzzle

9 September 2017, rev 22 January 2019
Jim Stevenson

This was a rather intricate puzzle from Presh Talwalkar. I found his solution a bit hard to follow, so I tried for a clearer presentation.
(https://mindyourdecisions.com/blog/2016/11/27/can-you-solve-the-diluted-wine-puzzle-famous-16th-century-math-problem/, retrieved 9/9/2017)

Can You Solve The Diluted Wine Puzzle?

Presh Talwalkar, November 27, 2016
A servant has a method to steal wine. He removes 3 cups from a barrel of wine and replaces it with 3 cups of water. The next day he wants more wine, so he does the same thing: he removes 3 cups from the same barrel (now with diluted wine) and replaces it with 3 cups of water. The following day he repeats this one more time, so he has drawn 3 times from the same barrel and has poured back 9 cups of water. At this point the barrel is 50% wine and 50% water. How many cups of wine were originally in the barrel? Watch the video for a solution.

Can You Solve The Diluted Wine Puzzle?

Talwalkar Answer To The Diluted Wine Puzzle

Suppose the barrel started with x cups of wine. We will keep track of how much wine is in the barrel and the concentration of wine in the barrel. Initially the barrel has x cups of wine and it is 100% wine (a concentration of 1).

Wine Amount (starting), Wine Concentration (starting)
x,
1
The servant first takes 3 cups of wine and replaces them with water. The amount of wine left is $x-3$, and the concentration is the amount of wine, $x-3$, divided by the total volume of liquid, which is x.

Wine Amount (step 1), Wine Concentration (step 1)

$$
\begin{aligned}
& x-3, \\
& x-3,
\end{aligned}
$$

$$
\begin{gathered}
(x-3) / x \\
1-3 / x
\end{gathered}
$$

The servant then removes 3 cups from the barrel, and each cup contains a concentration $1-3 / x$ of
wine. The amount of wine left is $x-3-3(1-3 / x) / x$, and the concentration is the amount of wine, $x-3-3(1-3 / x) / x$, divided by the total volume of liquid, which is x.

$$
\begin{array}{cc}
\text { Wine Amount (step 2), } & \text { Wine Concentration (step 2) } \\
x-3-3(1-3 / x), & (x-3-3(x-3) / x) / x \\
x-6+9 / x, & (x-6+9 / x) / x \\
x-6+9 / x, & (1-3 / x)^{2}
\end{array}
$$

The servant finally removes 3 more cups from the barrel, and each cup contains a concentration $(1-3 / x)^{2}$ of wine. The amount of wine left is $x-6+9 / x-3(1-3 / x)^{2}$, and the concentration is the amount of wine divided by the total volume of liquid, which is x.

$$
\begin{array}{cc}
\text { Wine Amount (step 3), } & \text { Wine Concentration (step 3) } \\
x-6+9 / x-3(1-3 / x)^{2}, & \left(x-6+9 / x-3(1-3 / x)^{2}\right) / x \\
x-9+27 / x-27 / x^{2}, & \left(x-9+27 / x-27 / x^{2}\right) / x \\
x-9+27 / x-27 / x^{2}, & (1-3 / x)^{3}
\end{array}
$$

The final concentration should be equal to 50%, or $1 / 2$.

$$
\begin{gathered}
(1-3 / x)^{3}=1 / 2 \\
(1-3 / x)=1 / 2^{1 / 3} \\
2^{1 / 3} x-3\left(2^{1 / 3}\right)=x \\
x\left(2^{1 / 3}-1\right)=3\left(2^{1 / 3}\right) \\
x=3\left(2^{1 / 3}\right) /\left(2^{1 / 3}-1\right) \approx 14.54
\end{gathered}
$$

Thus the original barrel contained approximately 14.5 cups of wine.
There is a shortcut to solving this problem! You can save many steps by noticing the concentration is $1-3 / x$ after the first step.

> Wine Amount (step 1), Wine Concentration (step 1)

$$
x-3,1-3 / x
$$

The subsequent steps iterate the same process of removing 3 cups and then diluting the wine with water. Accordingly, the wine is diluted by the same percentage in each step. To find the new concentration, multiply by the factor $1-3 / x$.

$$
\begin{aligned}
& \text { Wine Concentration (step 2) } \\
& (1-3 / x)^{2} \\
& \text { Wine Concentration (step 3) } \\
& (1-3 / x)^{3}
\end{aligned}
$$

Now we can set the concentration equal to $1 / 2$ and find the answer as before.

Sources

- I read this problem in Famous Puzzles of Great Mathematicians (https://amzn.to/2eGt3UQ) by Miodrag S. Petkovic. The puzzle appears in Niccolo Tartaglia's work "General Trattato di Numeri" (1556).
- StackExchange has the idea to multiply concentrations http://puzzling.stackexchange.com/questions/28776/turning-wine-into-water/28781

My Solution

I think the key to the problem is to consider the 3 cups of liquid removed from the barrel in terms of a fraction of the liquid in the barrel, namely, ${ }^{3} / \mathrm{v}$ of the volume V of liquid. Then for any uniformly well-mixed subset F of the volume (such as the wine), the fraction $3 / \mathrm{v}$ of F will be removed in the 3 cups of liquid (or equivalently, ${ }^{\mathrm{F}} / \mathrm{v}$ represents the fraction of the 3 cups consisting of F). This means arithmetically if W is the amount of wine at each step and H the amount of water, then

$$
\mathrm{V}-3=\mathrm{V}-(3 / \mathrm{v}) \mathrm{V}=(\mathrm{W}+\mathrm{H})-(3 / \mathrm{v})(\mathrm{W}+\mathrm{H})=[\mathrm{W}-(3 / \mathrm{v}) \mathrm{W}]+[\mathrm{H}-(3 / \mathrm{v}) \mathrm{H}]
$$

The following table shows the sequence of steps and what happens to the wine and the water in the barrel after each step.

Then 50% of the liquid at the end being wine implies that half the liquid is wine, that is,

$$
(1-3 / \mathrm{v})^{3} \mathrm{~V}=1 / 2 \mathrm{~V} \quad \text { or } \quad(1-3 / \mathrm{v})^{3}=1 / 2
$$

Therefore the original amount of wine V is

$$
V=\frac{3 \sqrt[3]{2}}{\sqrt[3]{2}-1}
$$

As you can see, I avoid multiplying things out during the intermediate steps, contrary to Presh Talwalkar. It is easier to see patterns and to avoid arithmetic mistakes.
© 2019 James Stevenson

