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Years ago (1967) I read about an interesting solution to the three jugs problem in a book by 

Nathan Court ([2]) which involved the idea of a billiard ball traversing a skew billiard table with 

distributions of the water between the jugs listed along the edges of the table.  The ball bounced 

between solutions until it ended on the desired value.  I thought it was very clever, but I really did not 

understand why it worked.  Later I figured out an explanation, which I present here. 

First, I give a statement of the problem (there are numerous versions, but this is the canonical 

one) and then describe the “billiard table solution.” 

Three Jug Problem 

The classic “Three Jugs” problem: Two friends who 

have an eight-quart jug of water wish to share it evenly. 

They also have two empty jars, one holding five quarts, the 

other three. How can they each measure exactly 4 quarts of 

water?  ([4]) 

The idea is that they can only fill or empty jugs.  They 

cannot partially fill a jug, since there are no markings to aid 

them, other than the full amount level (Figure 1).  This can 

be solved by trial and error, but there are some more 

organized approaches. 

The most ingenious solution is to map the problem onto a skew billiard table and plot trajectories 

of bouncing billiard balls under certain constraints.   

Two Jug Variant 

We will begin with a two jug variant, as described in the movie Die Hard III as recounted by 

Ross and Polster in their column Mathsnacks for the teacher’s magazine Viniculum published by the 

Mathematical Association of Victoria, Australia ([10]) (slightly edited): 

In the movie Die Hard: With a Vengeance, John (Bruce Willis) and Zeus (Samuel Jackson) 

are given a 5 gallon jug and a 3 gallon jug; then (with 30 seconds to think before they are blown 

to smithereens), they are ordered to use a fountain to fill the larger jug with exactly 4 gallons of 

water, using nothing but the jugs.  

Solution: The points in the grid [Figure 2] correspond to 

the different ways in which the two jugs can be filled with 

water. The horizontal lines represent the filling or emptying 

of the 5 gallon jug; the lines of positive slope represent the 

filling or emptying of the 3 gallon jug; and the lines of 

negative slope represent the transferring of water between 

the jugs. Then, one solution to our problem is traced by the 

blue path: (5,0)-(2,3)-(2,0)-(0,2)-(5,2)-(4,3). So, you start 

by filling the 5 gallon jug from the fountain, then you fill 

the 3 gallon jug from the 5 gallon jug (leaving 2 gallons in the 5 gallon jug), then you empty the 3 

gallon jug, etc.  

 
Figure 1    Three Jug Problem 

 
Figure 2    Billiard Ball Solution 
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How this relates to the original three jug problem is that the fountain represents the 8 gallon jug 

(where quarts have been changed to gallons).  Filling a jug from the fountain or emptying it into the 

fountain is equivalent to filling or emptying it into the 8 gallon jug.  The problem involves no more 

than 8 gallons of water. 

Billiard Table Solution.  The solution involves using a “skew” billiard table in the form of a 

parallelogram and sending a billiard ball bouncing off the sides until it arrives at the desired point.  

All the angles in the parallelogram billiard table of Figure 2 are 60° so that the triangles are 

equilateral and therefore equiangular.  Since a ball hitting the side of the table at an angle of 60° to 

the table edge will be reflected with the same angle, the trajectory of any ball will follow the edges of 

the triangles.  There is a further assumption that the sides of the table are integer values, in this case 5 

and 3, and that the ball starts at one of the integral points. 

Question: Why does the billiard table solution work and how can it address a three jug 

problem? 

Solution 

Let’s return to the three jug problem 

involving 8, 5, and 3 quart jugs.  Let x, y, and z 

represent the amount of water in each of those 

jugs respectively at any given time.  Then, since 

we are only using 8 quarts over all and not 

throwing any away, we always have the relation 

x + y + z = 8 

From geometry we see this represents the 

equation of a plane in three dimensional space 

that cuts each axis 8 units from the origin (light 

green region in Figure 3).  Furthermore, since we 

can’t have negative water, all the values of x, y, 

and z are ≥ 0, which restricts the (x, y, z) 

coordinates to the equilateral triangle shaded in 

the figure. 

But only x (representing the maximum 

amount of water in the 8 quart jug) can reach the 

value of 8.  y has a maximum value of 5 and z a 

maximum value of 3.  This limits the coordinates 

to a truncated version of the shaded light green 

triangle in the form of a parallelogram (Figure 4).  

This is achieved by slicing the light green triangle 

with one (green) plane parallel to the xz-plane 

cutting the y-axis at 5, and another (blue) plane 

parallel to the xy-plane cutting the z-axis at 3.  

Since the green plane is perpendicular to the y-

axis at y = 5, all (x, y, z) coordinates in that plane 

have y value 5.  For those coordinates on the x + y 

+ z = 8 plane (light green triangle) this represents 

the situation where the 5 quart jug is full and the 8 

and 3 quart jugs share the remaining 3 quarts 

between them. 

There are several things to note in this figure 

 
Figure 3    Plane for x + y + z = 8 

 

Figure 4    Truncated Triangle 
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that correspond to the physical actions of 

emptying and filling jugs.  Each action only 

involves two jugs, leaving the water in the third 

jug unchanged.  This corresponds to points 

moving in a plane for the two jugs which is 

perpendicular to the axis corresponding to the 

third, unchanged jug.  Suppose the 5 quart jug (y-

axis) is holding 4 quarts, and the remaining 4 

quarts of water are divided between the 8 and 3 

quart jugs (x and z values respectively) along a 

line that lies in a plane perpendicular to the y-axis 

cutting it at y = 4 and satisfying x + z =  4.  That 

means this plane slices the light green triangle 

along a line parallel to the right and left edges of 

the parallelogram (Figure 5).  A similar 

discussion shows that pouring water between the 

8 quart and 5 quart jugs (x and y values) 

represents points lying along lines parallel to the top and bottom edges of the parallelogram, since the 

amount of water in the 3 quart jug (z value) is left unchanged.  (And pouring water between the 5 and 

3 quart jugs (y and z values) leaving the 8 quart jug unchanged is represented by a line of points 

parallel to the right hand edge of the original light green triangle (red lines in Figure 6).) 

The second thing to notice is that because we are filling or emptying jugs and not stopping at 

intermediate levels, all actions involve arriving at points along the edges of the parallelogram in 

Figure 4 (also see Figure 5).   

 

Figure 5    Planar slice 

 

Figure 6    “Billiard Table” solution to Three Jugs Problem 
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So in Figure 6 we finally arrive at the “Billiard Table” picture corresponding to Figure 2.  Since 

we are using integral values for the size of the jugs and since we must fill or empty a jug, we only 

have integral values for the (x, y, z) coordinates along the edges representing the states of the jugs at 

any given time.  Given that the original triangle from the plane x + y + z = 8 was equilateral, and 

given that all the lines of coordinates representing the values of water in the jugs lie along lines 

parallel to the sides of the triangle, all angles are 60° and so can be interpreted as “reflections” of a 

billiard ball traversing the “table” if it starts at 60° angle initially.  Actually, there is some ambiguity 

at corners of the table as far as the reflection interpretation goes. 

Among other things, Figure 6 shows the solution of the two jug problem in Figure 2 starting at 

the star #2 and ending at the star #3.  But rather than get the water from the fountain we should get it 

from the 8 gallon jug, and so start at star #1 and then go the star #2, which is filling the 5 gallon jug 

from the 8 gallon one. 

Now the solution to the original, canonical Three Jug Problem requires one more step by going 

from start #3 to star #4 in Figure 6 (emptying the 3 gallon jug into the 8 gallon jug) and ending at 

point (4, 4, 0) with 4 gallons in the 8 gallon jug and 4 gallons in the 5 gallon jug. 

7 Quart Max Jug 

We illustrate two other versions of the Three Jug Problem where the largest jug is less than the 

sum of the other two.  Figure 7 shows the case for the largest jug being 7 quarts instead of 8.  Since 7 

is not an even number and we can only obtain integral values of quarts in the containers, it is clear we 

cannot divide the water into two equal parts.  And having less than eight quarts of water available we 

cannot get two containers with 4 quarts in each.  We could get two with 3 quarts each, or even 2 

quarts each, as shown in Figure 7.   

9 Quart Max Jug 

Figure 8 shows a case where the largest jug is greater than the sum of the other two, namely 9 

quarts instead of 8 quarts.  Again 9 is odd, so we cannot divide all the water evenly between two 

people, but we can consider getting 4 quarts in each of the two largest jugs.  But that would be the 

 

Figure 7    Three Jug Problem with 7qt, 5qt, 3qt jugs 
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coordinate (4, 4, 1), which does not lie on the edge of the parallelogram.  Therefore it is not reachable 

by the filling and emptying actions that we are allowed, and so we cannot achieve this solution.   

Figure 8 does show we can divide the water equally between 3 people.  The coordinate (3, 3, 3) 

lies on the edge of the parallelogram and the path reaching it is shown from star #1 to star #2.  If we 

wanted to have 4 quarts in the 5 gallon can, we can achieve that by continuing the path from start #2 

to star #3 at (5, 4, 0). 

Other Pouring Problems 

Dudeney ([6] p.152)  has the following puzzle: 

410. DELIVERING THE MILK   A milkman one morning was driving to his dairy with two 

10-gallon cans full of milk, when he was stopped by two countrywomen, who implored him to 

sell them a quart of milk each. Mrs. Green had a jug holding exactly 5 pints, and Mrs. Brown a 

jug holding exactly 4 pints, but the milkman had no measure whatever.  

How did he manage to put an exact quart into each of the jugs? It was the second quart that 

gave him all the difficulty. But he contrived to do it in as few as nine transactions—and by a 

“transaction” we mean the pouring from a can into a jug, or from one jug to another, or from a jug 

back to the can. How did he do it?  

This is clearly a pouring problem, but it involves 4 containers instead of 3, so it does not lend 

itself to the billiard table method (or the “trilinear coordinates” approach), and Dudeney did not use 

such a graphical method in his solution.  However, Martin Gardner ([7] p.33) claims a “tetrahedral 

coordinates” approach to the four container problem was described by O’Beirne in his book ([9] 

Chapter 4). 

 

Figure 8    Three Jug Problem with 9qt, 5qt, 3qt jugs 
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History 

Dudeney (1917, [5] p.109) provides the following history for the “pouring problems” or 

“Tartaglia’s measuring puzzles.” 

Apparently the first printed puzzle involving the measuring of a given quantity of liquid by 

pouring from one vessel to others of known capacity was that propounded by Niccola Fontana, 

better known as “Tartaglia” (the stammerer, 1500-1559).  It consists in dividing 24 oz. of valuable 

balsam into three equal parts, the only measures available being vessels holding 5, 11, and 13 

ounces respectively.  There are many different solutions to this puzzle in six manipulations, or 

pourings from one vessel to another.  Bachet de Méziriac reprinted this and other of Tartaglia’s 

puzzles in his Problèmes plaisans et deléctables (1612).  It is the general opinion that puzzles of 

this class can only be solved by trial, but I think formulae can be constructed for the solution 

generally of certain related cases.  It is a practically unexplored field for investigation. 

Further Reading 

Bellman and Cooke (1970, [1] p. 195) provide more recent background on some algorithmic and 

mathematical solutions:  

The solution by means of the billiard ball method was first published (but not so named) in 

Tweedie (1939, [12]).  The “billiard ball” interpretation is due to Y. I. Perelman, according to N. 

Court (1964, [2] p.199).  Tweedie pointed out that the coordinates (x, y, z) describing the state of 

the jugs can be taken to be the “trilinear coordinates” of a point with respect to an equilateral 

triangle. 

Gardner (1963, [7] pp.248-266, or 1967 pp.29-38), Court (1964, [2] pp.198ff.), Coxeter and 

Greitzer (1967, [3] pp.89ff), Michael (2009, [8] pp.148ff), and Stewart (2009, [11] pp.105, 299ff) all 

provide discussions of the billiard ball or trilinear coordinate solution.  
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