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All too frequently I come across the usual statements questioning why non-technical folks should 

bother studying math.
1
  A typical example is the Pythagorean Theorem.  People say, “What good is 

that?  I’ll never use it.  So why bother?”  Ah, the famous “utility” argument – as if everything 

worthwhile must be “useful.”  What about “useless” music?  Why slave away learning how to play an 

instrument if you will never become a professional?  And what is the use of listening to music?  Even 

worse, what is the point of learning how to play checkers or chess, or card games?  If you are not 

going to be a professional player or use them for gambling, what is the point?  The point is, of course, 

that we like it.  Music and game-playing enhance our lives in many ways that are not utilitarian.  The 

mental challenge of games is especially satisfying, as is solving puzzles.   

At its best, mathematics satisfies all these aspects – it is full of puzzles, mentally challenging, 

esthetically pleasing, and even quite utilitarian.  I thought I would take this “useless” math example 

par excellence and show that, in fact, it harbors many of the best aspects of mathematics that anyone 

should find appealing. 

First, what is the theorem?   Figure 1 provides a picture.  The statement is that for any right 

triangle (one with a 90° angle at one of its vertices), the sum of the squares of the lengths of the sides 

adjacent to the right angle, the legs, is equal to the square of the length of the side opposite the right 

angle, the hypotenuse.   

 

Figure 1    Pythagorean Theorem 

There is some interesting history about this theorem that I won’t go into now.
2
  But one thing I do 

want to emphasize is that even though it may be 2500 – or even 4500 – years old, it is unchanged.  

That is, it is as valid today as it was millennia ago.  Very few things in life can say that.  I always 

loved Shelley’s poem Ozymandias about the crumbled, stone ruins of the king who thought himself 

eternal, which ends with 

“My name is Ozymandias, king of kings: 

Look on my works, ye Mighty, and despair!” 

Nothing beside remains. Round the decay 

Of that colossal wreck, boundless and bare 

The lone and level sands stretch far away. 

                                                 
1
  A recent attack can be found in Andrew Hacker’s latest, The Math Myth and Other STEM Delusions (2015) 

2
  See the website Cut the Knot by Alexander Bogomolny: http://www.cut-the-knot.org/pythagoras/, Remark 1 

a2 + b2 = c2 
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Mathematics is wonderfully eternal, and the amazing thing is that it survives, not in indelible media 

like stone and rock, but in the ephemeral domain of the human mind.  It is marvelous how it endures 

down the years from the fragile human activity of passing it from one mind to another through 

education. 

Pythagorean Theorem Proofs 

So the puzzle aspect of the Pythagorean Theorem is how do we show it is true?  Showing its 

validity through deductive reasoning is called a proof.  Since the theorem is at least 2500 years old, 

and possibly older, it is not surprising that a plethora of proofs have been discovered through the 

years.
3
  We shall consider a geometric version and then an algebraic version. 

Geometric Proof 

The idea is shown in Figure 2.  We first construct a square S4 with sides a + b.  We then place 

four copies of the right triangle T inside the square as shown in Figure 2(a).  The space not covered 

by the 4 triangles is the same as the areas on the legs of the triangle, namely the medium light blue 

square S1 and the small red square S2.  We then rearrange (translate and rotate) the four triangles as 

shown in Figure 2(b).  Now the space not covered by the triangles is the large green square S3.  Since 

the uncovered space must be the same in both cases, we have S1 + S2 = S3 or b
2
 + a

2
 = c

2
.  I saw this 

version of the proof years ago on Jacob Bronowski’s television show The Ascent of Man.  (See the 

Appendix p.7 for another, more direct geometric proof.) 

 

 (a) 

 

 (b) 

Figure 2    Pythagorean Theorem Geometric Proof 

Algebraic Proof 

We consider a purely algebraic proof based on Figure 2(b). 

Figure 3 shows the original right triangle (blue) with the large 

square on side c (green) inscribed in the larger square of side a + b. 

The remaining space in the larger square consists of three more 

triangles congruent to the blue triangle, and so each with the same 

area.  The area of the larger square is 

 Area Large Square = (a + b)2 = a2 + 2ab + b2 
(1) 

But adding up the areas of the inscribed green square and four 

triangles, we have 

 Area Large Square = c2 + 4(ab/2) = c2 + 2ab (2) 

                                                 
3
  116 of these proofs can be found at Bogomolny’s website mentioned in Note 2 

 
Figure 3    Pythagorean Theorem 

Algebraic Proof 
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Therefore, equating the two expressions gives 

a2 + 2ab + b2 = c2 + 2ab  ⇒  ⇒  ⇒  ⇒  a2 + b2 = c2
 

The steps in the algebraic proof actually mirror the geometric proof given above.  That is, 

equation (1) corresponds to Figure 2(a) and equation (2) corresponds to Figure 2(b). 

Plane Geometry 

Both approaches above actually used properties of plane geometry, which we need to understand 

more clearly.  Plane geometry is the study of the properties of figures drawn on a flat surface, a plane, 

which are unchanged when one figure is made to coincide with another by rigid motions, that is, by 

one or more translations (sliding), rotations, or flips (turning over).  Two figures that can be made to 

coincide via rigid motions are said to be congruent.  So plane geometry is the study of properties that 

remain the same for congruent figures.   

Theorems are developed to say when two figures are congruent (can be made to coincide via rigid 

motions).  For example, two triangles having their corresponding three sides equal in length are 

congruent.  This is called the side-side-side (SSS) condition.  So if two right triangles have 

corresponding legs of the same length, then their third sides, the hypotenuses, are also equal – by the 

Pythagorean Theorem! – and so the triangles are congruent. 

Recall that the first geometric approach above relied heavily on the rigid motion of translation to 

slide the pieces of the smaller squares until they coincided with the larger square on the hypotenuse.  

And in the second approach we were using the SSS property to say the three grey triangles were 

congruent with original blue triangle.  We then used the property that areas of congruent figures are 

the same to obtain our desired result. 

So what happens when we are not on a flat, planer surface? 

Geometry on a Sphere 

We now wish to consider right triangles on a sphere and see what happens to the Pythagorean 

Theorem there.  But first we need to figure out what “straight” lines on a sphere would mean, since 

we need to use those to construct triangles.  We also need to make clear what an angle means as well, 

since we want the triangle to have a right angle in it. 

Straight Line.   

Assume you are standing on a sphere (like the earth) at 

some point P (see black arrow in Figure 4).  Imagine a line 

running from your head to your feet and then passing 

through to the center of the sphere C.  At your feet lay 

down a straight rod and then imagine a “straight” line 

passing through it without changing direction.  The red 

arrow in Figure 4 represents the rod.  You (black arrow) 

and the rod (red arrow) define a plane passing through the 

center of the sphere, which cuts the sphere in a circle.  Any 

such circle whose center coincides with the center of the 

sphere is called a great circle.  It seems reasonable to say 

that as long as you are walking along the red line, you are 

walking “straight ahead”, that is, in a straight line.  So we 

have our definition, namely, a straight line on the sphere is 

an arc of a great circle.   

If we have two points on the sphere, we pass a plane 
 

Figure 4    “Straight” Line on a Sphere 
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through them and the center of the sphere. Then the straight line joining them will be the arc of the 

great circle between them. There is some ambiguity here, since there are usually two arcs to choose 

from, a shorter and then a longer going the other way around. We will always choose the shorter arc.  

If the two points are antipodal points (lying on opposite ends of a diameter of the sphere) then both 

arcs are the same length. 

Shortest Distance 

There is one other property of straight lines we are 

used to, namely, they are the shortest distance between 

two points on a plane.  (This takes some discussion to 

make clear.)  It turns out that arcs of great circles have 

that same property.  (This is even harder to show.  To see 

the effect, however, take a rubber band and stretch it 

between two points on a globe.  The position it takes is 

along a great circle arc, and it is clearly the shortest 

distance.)  Figure 5 provides an example of two points 

(New York City and Lisbon, Portugal) on the same 

latitude circle of a spherical earth whose great circle 

distance is 5405 km, but whose distance along the 

latitude circle is longer, namely, 5550 km.  Latitude 

circles are obtained by slicing the earth with planes parallel to the equator.  Except for the equator, 

whose plane passes through the center, all these latitude circles are not great circles.  (There is some 

waffling in this discussion due to the fact that the earth is not a perfect sphere.  In fact, it is closer to 

an oblate spheroid where the north and south poles are squashed a bit towards the center.  But we 

shall continue to assume it is a sphere.) 

Angles 

One other thing we have to address is the meaning of 

an angle between two straight lines (great circle arcs) on 

a sphere.  Suppose we have two lines (arcs) emanating 

from a point P on the sphere (see Figure 6).  Extend the 

great circle arcs to the complete circles and consider the 

tangent lines to these circles at P, indicated by the two 

black arrows in Figure 6.  These two arrows and their 

associated straight lines define a plane tangent to the 

sphere at P.  We reduce the definition of angle between 

arcs to the plane geometry definition of an angle between 

two lines in a plane.  So angle θθθθ between two great 

circle arcs intersecting at a point P is the angle between 

the two tangent lines to the corresponding great circles 

intersecting at P. 

Pythagorean Theorem on a Sphere? 

We now want to draw a right triangle on a sphere and see if the Pythagorean Theorem holds.  We 

are going to use the earth as our sphere and three cities to form the vertices of our right triangle.  We 

will then measure the distances between them and see if they satisfy the Pythagorean Theorem.   

In order to find a right triangle on earth we need to find a place where two great circles meet at 

right angles.  Since all the meridians (constant longitude lines) are arcs of great circles, then any two 

points with the same longitude lie on a great circle arc defined by that meridian.  As we saw in Figure 

5, even though parallels (latitude circles) are perpendicular to meridians, only the equator is a great 

 

Figure 5    Great Circle vs. Latitude Circle 

https://commons.wikimedia.org/wiki/File:Wiki_great_circle.png 

 

Figure 6    Angle Definition 
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circle.  So we need to construct our earth triangle with one leg along the equator and another along a 

meridian.  Figure 7 shows such a right triangle in South America using for vertices the cities Quito, 

Ecuador, Manapá, Brazil, and Porto Alegre, Brazil. 

Table 1 shows the values for the locations of the cities obtained from Google Maps using the 

“What’s here?” right click on each city.  The values were given in signed decimal degrees.  I added 

the values converted to deg-min-sec format.  The last column records values for the distances 

Table 1    Positions of Vertices of Right Triangle on Earth (Google Maps) 

City Latitude Lat  Dev Longitude Lon  Dev Distance* 

Quito -0.0651°  

00° 04' S 

-78.5247° 

78° 31' W 

 to  Macapá 

1895 mi 

Macapá 0.0668° 

00° 04' N 

 

0.1319° 

≈ 8 mi -51.0588° 

51° 04' W 

to P. Alegre 

2080 mi 

Porto Alegre -29.9732° 

29° 58' S 

 -51.2346° 

51° 14' W 

 

0.1758° 

≈ 11 mi to Quito 

2735 mi 

*  http://www.mapdevelopers.com/distance_from_to.php 

 
Figure 7    “Right” Triangle in South America 
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between the cities in miles based on computations from the Google Map Developers website.
4
  

Supposedly these numbers should all be consistent with one another, since they came from Google. 

As we try to illustrate the abstract mathematics with a real example, we run into the inevitable 

mismatch.  That is, real data never quite fits the general model we are using, so we have to measure 

the deviations from what we want and try to correct for them.  Table 1 has two columns that show the 

deviations of the Quito-Macapá locations from lying on the equator (lat dev) and the Macapá-Porto 

Alegre locations from lying on a common meridian (lon dev).  We make the assumption that a minute 

of lat dev and a minute lon dev at the equator is each approximately one mile (it is actually one 

nautical mile which is about 10% longer the a regular statute mile).  In order to compensate for these 

deviations and to try to make the angle at Macapá closer to 90°, we will move the vertex at Macapá 

11 miles west and 8 miles south.  Thus the Quito-Macapá distance becomes 1884 miles and the 

Macapá-Porto Alegre distance becomes 2072 miles. 

Now we compute the sum of squares of the legs to see how close it is to the square of the 

hypotenuse. 

18842 + 20722 ≈ 28002
 

Then the difference is  

2800 – 2735 = 65 miles. 

The error is about  

65/2735 ≈ 2% 

which is not very large.   

Using location values from Wikipedia yields even greater deviations, as shown in Table 2.  Still 

using the distances from Table 1, which may be erroneous with these new locations, we have the 

following computations. 

18852 + 20642 ≈ 27952
 

2795 – 2735 = 60 miles. 

60/2735 ≈ 2% 

Deviation from Pythagorean Theorem 

So is this discrepancy between what the plane geometry form of the Pythagorean Theorem would 

say and what we measure real, or are there more errors that would cancel the difference?  It is true 

                                                 
4
  http://www.mapdevelopers.com/distance_from_to.php 

Table 2    Positions of Vertices of Right Triangle on Earth (Wikipedia) 

City Latitude Lat Dev Longitude Lon  Dev Distance* 

Quito 00° 14′        S  78° 31′        W  to  Macapá 

1895 mi 

Macapá 00° 02′ 02″ N  

 

≈ 16 mi 

51° 03′ 59″ W to P. Alegre 

2080 mi 

Porto Alegre 30° 01′ 59″ S   51° 13′ 48″ W 

 

≈ 10 mi 

to Quito 

2735 mi 

*  http://www.mapdevelopers.com/distance_from_to.php 
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there are more unknowns in these calculations that might make some difference, but it seems that the 

discrepancy is real.   

In fact, consider an extreme case, namely that shown 

in Figure 8.  Here we have our right triangle with two 

vertices on the equator, one on the Greenwich Meridian 

(0°) and the other 90° W.  The third vertex is at the North 

Pole.  The Greenwich Meridian intersects the equator at a 

90° angle, so the triangle is technically a right triangle.  

But the length L of each side of the triangle is the same, in 

fact, ¼ the circumference C of the globe.  If we assume C 

is about 25,000 miles, then each L is about 6,250 miles. 

Now the sum of the squares of the two legs is 

L2 + L2 =  2 L2 

which would mean the hypotenuse should be √2 L.  But 

the actual side is only of length L.  Since √2 ≈ 1.414, the 

discrepancy is now 41%.  So increasing the length of the 

legs from about 2000 miles to over three times as much at 

6250 miles causes the hypotenuse excess to rise from 2% to 41%.  

So we conclude that if a surface satisfies the Pythagorean Theorem, it must be flat.   

Thus computing with the Pythagorean Theorem tells us something about the curvature of a 

surface.  Why this is important is the way it tells us about curvature.  If we never had airplanes or 

satellites to show us the spherical nature of the earth, all we could do is essentially move around on its 

surface to try to figure it out.  Well, the measurements we used in the computations above could 

easily come from just such surface measurements, such as those made a century or two ago, before 

satellites and airplanes.  Properties of surfaces that can be deduced solely from information on the 

surface are called intrinsic.  Those properties that require the surface be embedded in a space of 

higher dimensions are called extrinsic.   

Why is that significant?  Well, we live in a 3-dimensional space, and we cannot determine the 

curvature of this space by looking at it embedded in a 4-dimensional space.  The only way we can do 

this is intrinsically.  Okay, what are the straight lines in 3-dimensional space?  It turns out they are the 

pathways of beams of light.  And what did Einstein predict in 1915 with his General Theory of 

Relativity, and what did Eddington observe in 1919? – that beams of light are bent as they pass near 

gravitational objects, such as the sun.  This means gravitational objects bend our 3-dimensional space.  

(In fact, they bend the 4-dimensional spacetime, but that is for another time.)  And so our space is 

curved.  A very big question is the nature of this curvature.  Is it like a sphere or like the surface of a 

saddle?  Discussing the curvature of the 4-dimensional spacetime implies answers to the question of 

does the universe expand forever or does it stop and recontract? 

Conclusion 

So, far from being a useless, boring piece of trivia, the Pythagorean Theorem involves all kinds of 

fascinating mental gymnastics and plays a role in our probing and understanding of the universe 

around us.  People who do not attempt to explore these ideas are condemned to wander in dark caves 

with limited vision and stunted lives. 

Appendix: Another Geometric Proof 

Among the many geometric proofs, there is one other that I find particularly appealing.  It is 

based on an animated GIF found on the website http://www.mscroggs.co.uk/blog/27.   

 

Figure 8    Octant of Sphere 
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Area of a Parallelogram 

The proof uses one additional property of areas that I should highlight, namely, that of the area of 

parallelograms (Figure 9).  

 

Figure 9    Area of a Parallelogram 

Using the labels in the figure, we see the area of the parallelogram on the right is equal to the area 

of the rectangle on the left, namely bh.  Visually this means we can take any rectangle and slide its 

upper side parallel to its lower side, always maintaining the same distance, and the resulting 

parallelogram will have the same area.   

Rigorous Geometric Proof 

We use this property for a nice, visual proof of the Pythagorean Theorem, based on the website 

http://www.mscroggs.co.uk/blog/27, as shown in Figure 10. 

There is only one step that might raise a 

question, namely from Figure 10(b) to Figure 

10(c).  That is, how do we know that the upper 

edge of the red parallelogram is exactly the length 

c of the side of the large square?  This is equivalent 

to asking how do we know the diagonal of the 

rectangle on the lower left of the figure is the same 

as the edge of the large square?   The answer is 

given in Figure 11. 

The diagonal of the rectangle is also the 

hypotenuse of a right triangle that is the rotated 

(and translated) image of the original triangle.  

Therefore, this triangle is congruent to the original 

and has all the same lengths and angles.  Thus the 

       

 (a) (b) (c) (d) 

Figure 10    Alternative Geometric Proof of Pythagorean Theorem 

 

Figure 11    Congruent Triangles 
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diagonal of the rectangle is also of length c, the length of the edge of the large square.  And so this 

geometric manipulation really does constitute a rigorous proof of the Pythagorean Theorem. 

Figure 12 gives the animated GIF of the proof as found on the website 

http://www.mscroggs.co.uk/blog/27. 

 

Figure 12    Animated GIF 
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