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One thing I have always been curious about, but never got around to investigating, is how hard is 

it to see that the Lambert Equal-Area Projection of a sphere onto a cylinder in fact preserves areas?   

Figure 1 depicts the Lambert Equal-Area Cylindrical Projection where each non-polar point on 

the sphere is mapped to a point on the cylinder wrapped around its equator by drawing a line from the 

axis of the sphere (perpendicular to the plane of the equator) horizontally through the given point on 

the sphere until the line intersects the cylinder.  That point of intersection is the projected point.  The 

cylinder is then cut along a meridian and rolled out flat to give the map. 

The Lambert projection is an equal-area mapping if the area of any region on the sphere has the 

same value as the area of its projected image on the cylinder (see Figure 2). Because all the surfaces 

involved are curved, we have to resort to calculus.  Rather than carry out detailed calculations, we 

will suggest intuitively how this is done.   

 

Figure 1   Lambert Equal-Area Cylindrical Projection 

 

Figure 2    F is an equal-area mapping if  F(AAAA) = AAAA for any area in its domain 
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In calculus the area of a region is obtained by integration.  This process amounts to covering the 

region of interest with a succession of sets of contiguous tiles, where each set consists of an 

increasing number of smaller and smaller tiles which approximate the region better and better.  The 

area is taken to be the limit of the areas of this succession of covering sets.  The idea is to select the 

tiles so that their individual areas are easy to compute and we can just add them up to get the area of 

the whole set.   

Example: Area of Circle 

These ideas are illustrated in Figure 3, following the example of Archimedes, the famous third 

century BC Greek mathematician, who calculated the area of a circle by finding the areas of 

successive regular polygons of n sides inscribed in the circle.  As the number of sides n grew, the 

polygon Pn approximates the circle better and better, and so the area of the circle is the limit as n 

grows without bound of the areas of Pn.  The area of the nth polygon Pn is computed by subdividing 

the polygon into n equal triangles Tn (“tiles”) as shown in Figure 3.  Then the area of Pn is  n Tn.   

 

. 

Recall that the area of a triangle is one half the 

base times the altitude.  Using Figure 4, we see 

the area of Tn is 
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Therefore, we have for the area of polygon Pn, 
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where xn = 2π / n.  So as n becomes large (written n → ∞), xn → 0 and  sin xn / xn → 1 (proved in a 

calculus course), and so Pn  → π r
2
, the area of a circle of radius r. 

 

 

Back to the Lambert Cylindrical Projection.  The way we will show it is equal-area is by showing 

it projects each tile in a covering of a region of the sphere onto a tile of equal area on the cylinder.  

There will be a little fudging (approximations), but these differences will vanish in the limit.  We 

 

Figure 3    Approximating the area of a circle with successive regular polygons with triangular tiles. 

 

Figure 4    Calculating Area of  Triangle Tn 
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choose the tiles or patches on the sphere to be little curvilinear “rectangles” bounded by latitude and 

longitude circles (equivalently parallels and meridians).  Figure 5 shows an example of such a patch 

(in green) and its projection onto the cylinder (in red).   

We now have the issue of how to measure the area of these patches.  The cylindrical patch is not 

a problem, since we can slice the cylinder along a meridian and lay it down flat.  This distance-

preserving motion does not change the area of the patch, so it becomes a simple rectangle of height ∆z 

and width a ∆θ, where ∆θ is the change in longitude measured in radians and a is the radius of the 

cylinder. 

The green patch on the sphere is more of a problem.  A most remarkable theorem of Gauss 

(basically) states that any distance-preserving transformation of one surface into another must also 

preserve its intrinsic curvature.  There are technical issues in the definition of curvature here that I 

will skip (since a curved sheet like a cylinder can be laid flat on a plane (preserving distances) and the 

plane’s curvature is clearly zero, it must mean the cylinder’s intrinsic curvature is also zero as well!).  

But the sphere’s intrinsic curvature is 1/a
2
 > 0 where a 

is the radius of the sphere.  So we are going to have to 

resort to some approximations to represent the patch 

on a flat plane in order to measure the area.  One 

approach would be to pick the lower left corner of the 

patch and lay out a rectangle using the lengths of the 

arcs leading from this corner, that is, a rectangle with 

height a ∆λ and width r ∆θ.  Since the meridians are 

slanting inward toward the poles, the patch is really 

more like a trapezoid with the upper edge shorter than 

the lower edge (r shrinks as we move northward).  But 

this difference from our rectangle (as well as the 

curvature of the right-hand edge) diminishes as we 

take smaller and smaller patches.  (See Figure 6) 

 
Figure 5    Lambert projection of area patch  ∆∆∆∆AAAASSSS  onto  ∆∆∆∆AAAACCCC 

 

Figure 6    Rectangular Area Approximations 
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So as a first step we have for the areas of the cylindrical patch and spherical patch respectively: 

AC = (∆z)( a ∆θ )    and   AS ≈ ( a ∆λ )( r ∆θ ) = ( r ∆λ )( a ∆θ ) (1) 

In order to show these two areas converge to one another in the limit as we shrink the latitude and 

longitude spacing, we only need to show  r.∆λ → ∆z (see Figure 6).  From Figure 5 we see that  z = 

a.sin λ.  We need a way to relate ∆z and ∆λ.  We have  

( ) ( ) λλλ sinsin aazzzz −∆+=−∆+=∆  

( )[ ]λλλλλ sinsincoscossin −∆+∆= a            (trigonometry identity) 

( )[ ]λλλλ ∆+−∆= sincos1cossina  (2) 

We need to consider some further approximations as ∆λ → 0.  (Notice we don’t have to worry 

about ∆θ  → 0.)  From the properties of the cosine we know that for small angles the cosine is almost 

1, so cos ∆λ → 1, as ∆λ → 0, and so the first term in equation (2) becomes negligible.  From the limit 

we mentioned explaining the area of the circle, namely, sin xn / xn → 1, as xn → 0, we have 

sin.∆λ → ∆λ, as ∆λ → 0.  Putting all this together with equation (2) yields (see Figure 5) 

∆z ≈ (a cos λ) ∆λ = r.∆λ       (3) 

which is what we wanted to show.  And so AS → AC as we take smaller and smaller patches on the 

sphere, and that implies that the areas of regions of the sphere are preserved under the Lambert 

Cylindrical Projection. 

 

(Update 12/4/2018)  A terrific Youtube video that 

includes a more intuitive and visual explanation of the 

idea of the equal area projection is “But WHY is a sphere's 

surface area four times its shadow?” (12/2/2018) 

(https://www.youtube.com/watch?v=GNcFjFmqEc8) by 

Grant Sanderson at 3blue1brown. 
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