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Years ago (1963) I got the paperback The Calculus:A Genetic Approach, by Otto Toeplitz [1], 

which presented the basic ideas of the differential and integral calculus from a historical point of 

view.  At the time I found the presentation “messy” and difficult to follow.  Yet over the years I kept 

returning to the book as I learned more mathematics and become more interested in the history of 

mathematics.  I kept thinking that some of the modern-day abstractions might be more easily 

understood if I returned to their origins and tried to follow the more concrete and perhaps intuitive 

approach of their creators. 

Alas, I discovered some more fundamental truisms.  Namely, that the initial creators or modifiers 

of ideas had a confused notion of what these ideas were, or rather that they were approaching these 

ideas from a much different direction from today.  They were usually exploring detailed issues or 

examples of a more advanced nature and were only getting glimmerings of underlying simplifying 

abstractions.  For example, today we spend a lot of time in the beginning of calculus defining what a 

function is.  Historically, today’s definition was arrived at relatively recently (end of 19
th
 century) 

based on the evolving idea that a function could be represented by a Fourier series.  The limits of 

Fourier series often had very strange properties that challenged earlier ideas of what a function should 

be. The coefficients of the Fourier series involved integrals of this limit function, which consequently 

raised questions about what integration should be.  The study of Fourier series also spawned  the 

ideas of point set topology and Cantor’s great achievement of categorizing infinite sets. Now we 

discuss functions (and these other concepts) way before we reach the study of a Fourier series, and so 

Fourier series would not be a good motivator for an elementary class.
1
 

But one thing Toeplitz did at the end of his book that I had not seen in other texts was to show the 

equivalence of Kepler’s Laws and Newton’s Law of Gravity.
2
  I thought I would try to emulate his 

approach with more modern notation (vectors) and arguments in hopes of extracting the essential 

ideas from the clutter.  

 To keep things as clear as possible I thought I would state all the laws up front.  I used my old 

college physics text book for the statements ([2]), since Toeplitz had a slightly simplifying approach 

that initially omitted the idea of mass and forces.  Toeplitz also deviated from more common usage by 

reversing the order of Kepler’s Laws (following Newton and Kepler himself, actually).  I have used 

the more traditional order.
3
 

Kepler’s Laws ([2] p. 42) 

1. The orbit of each planet is an ellipse with the sun at one focus. 

2. The radius vector drawn from the sun to a planet sweeps out equal areas in equal times (Law of 

Areas). 

3. The squares of the periods of revolution are proportional to the cubes of the semimajor axes of 

the elliptical orbits. (Harmonic Law) 

Newton’s Laws of Motion ([2] p. 30) 

1. Every body continues in its state of rest or of uniform motion in a straight line, except in so far as 

it is compelled by forces to change that state. (Law of Inertia) 

                                                           
1
  David Bressoud recently published an analysis text (2007) that takes this very historical approach ([4]). 

2
  Since 1963 Bressoud has developed this theme in his excellent 1991 text ([3]). 

3
  For more historical background to the evolution of these ideas from Kepler to Newton, see Cohen’s book 

([5]). 
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2. Time rate of change of “quality of motion” (i.e., rate of change of momentum = ma) is 

proportional to force and has the direction of the force (F = ma) 

3. To every action there is always an equal and contrary reaction: or the mutual actions of any two 

bodies are always equal and oppositely directed along the same straight line. 

Newton’s Universal Law of Gravity ([2] p. 41) 

Every particle in the universe attracts every other particle [along the line between them] with a force 

that is proportional to the product of the masses and inversely proportional to the square of  the 

distance between the particles.  (F=GMm/r
2
) 

Newton’s Law (Acceleration Version)  (Toeplitz,  [1] p. 156) 

The acceleration of a planet is always directed toward the sun, and its magnitude is inversely 

proportional to the square of its distance from the sun.   

Toeplitz does not mention forces or masses in his version, at least initially.  A priori the constant 

of proportionality may depend on properties of the planet and of the sun, that is, different planets at 

the same distance from the sun may have different accelerations, and similarly for a planet at the 

same distance from different suns.  But for the same planet and the same sun, the acceleration only 

depends on the distance. 
 

 

Figure 1    Vector and Area Relationships 

 

Planar Motion Theorem   If a particle moves so that its acceleration is always along the line joining 

another particle, then it describes a planar curve. 

Proof.  Using the diagrams in Figure 1, let w = r x v, where all vectors are now assumed to be in 3-

space.  Let ŵ  represent the unit vector.  Then ŵ  is perpendicular to both r and v, and r moves in a 

plane if and only if ŵ  does not change over time, that is, only moves parallel to itself.  This is 

equivalent to saying 

0== ww &̂ˆ
dt

d
 

Now letting va &=  represent the acceleration vector and w = |w| represent the length of a vector,  

))(ˆ(ˆ)(1ˆ arwwarw ×•−×=
w

&  

0=⇒=×⇒∴ w0arar &̂   toparallel  

And so if a particle always moves so that its acceleration is along the line joining another particle, that 

is, so that r is parallel to a, then the curve of motion is planar. 
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Equal Areas Theorem (cf. Toeplitz, [1] p.152)  A particle moves so that its acceleration is always 

directed along the line joining another particle if and only if the particle moves in a planar curve and 

the line between the two particles sweeps out equal areas in equal amounts of time. 

Proof. We have already shown the that radial acceleration implies planar motion (Planar Motion 

Theorem).  So it suffices to show for a planar curve that radial acceleration is equivalent to the Law 

of Areas.  Using the diagrams above in Figure 1, we have for the area A swept out by the radial vector 

from one particle to the other the following time rate of change derivatives 

θ&& 2

2
1 rA =    implies  θθ &&&&&& 2

2
1 rrrA +=  

Thus the Law of Areas means constant=A&  or 0=A&& .   

Let r̂  represent the unit vector along r and 
⊥

r̂  the counterclockwise unit vector perpendicular to 

r in the plane (see Figure 1), namely,  

θθ sinˆcosˆˆ jir +=   and   θθ cosˆsinˆˆ jir +−=⊥     so that 

θ&& ⊥= rr ˆˆ    and   θ&& rr ˆˆ −=⊥  

Now  

θ&&& rr
⊥+== rrrv ˆˆ    and  

⊥
++−== rrva ˆ)2(ˆ)(

2 θθθ &&&&&&&& rrrr   so that 

⊥+−= rra ˆ
2

ˆ)
4

(
3

2

r

A

r

A
r

&&&

&&   (1) 

which implies  a || r  0=⇔ A&& .  QED 

Note: these last two theorems only involved acceleration along the line between the particles and 

not actually acceleration of one particle towards the other.  That is, we only used a || r with no 

mention of sign. 
 

Kepler’s First Two Laws ⇒⇒⇒⇒ Newton’s Law (Acceleration version) 

Proof: We could use the Equal Areas Theorem to get the radial acceleration, but we need more.  We 

need to show the planet’s acceleration is toward the sun and that it is inversely proportional to the 

 

Figure 2    Elliptical Planetary Orbit 
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square of the distance. 

Assumption 1  Kepler’s First Law  (Elliptical Path) 

Figure 2 represents the planet at P moving along the ellipse with the sun at one focus S.  F 

represents the other focus of the ellipse with a vector ρρρρ from F to P.  Then the path generated by P is 

an ellipse if and only if the sum of the distances from P to the foci is a constant, that is, the path is an 

ellipse  ⇔ ρ + r = 2a for all θ and some constant a (= semimajor axis).  (Semiminor axis b satisfies b
2
 

+ c
2
 = a

2
)   Therefore,  

ρ2
 = (2a – r)

2 = 4a
2
 – 4ar + r

2
 

From vectors 

ρ2
 = ρρρρ⋅⋅⋅⋅ρρρρ = (2c i + r) ⋅⋅⋅⋅ (2c i + r) = 4c

2
 – 4c r⋅⋅⋅⋅i + r2

 

Combining equations gives 

ar + c r⋅⋅⋅⋅i = a
2
 – c

2
  ⇒  r = a – c > 0 when θ = 0 for an ellipse (so that r⋅⋅⋅⋅i = r). 

Defining e = c/a < 1 (eccentricity) and p = a(1 – e
2
) > 0 (p = b

2
/a the semi-latus rectum), we have 

r + e r⋅⋅⋅⋅i = p (2) 

Setting r = r r̂ , we get per =⋅+ )ˆˆ1( ir , so that 

θcos1 e

p
r

+
=  

Differentiating equation (2) twice we have 0ˆ =⋅+ ir&&&& er .  Using r&&  for a in equation (1) and  

Assumption 2    Kepler’s Second Law  ( 0=A&& , constant=A& ), 
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From (2) with r = r r̂ , we have for constant=A& and the path an ellipse 
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where 0
)1(
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γ  and is constant over time.  And so from equation (1) the acceleration of P 

is  

ra ˆ
2

r

γ
−= ,  γ  > 0. 

Therefore the acceleration of the planet P is towards the sun S and inversely proportional to the 

square of the distance between them.  QED 

 

Newton’s Law (Acceleration version) ⇒⇒⇒⇒ Kepler’s First Two Laws  

Proof: Assumption 3  Newton’s Law (Acceleration version)  ( ra ˆ
2

r

γ
−=  , γ > 0) 

By the Equal Areas Theorem, the planet moves along a planar curve and the line from it to the 
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sun sweeps out equal areas in equal times (Kepler’s Second Law: Law of Areas).  It remains to show 

the planar curve is an ellipse (Kepler’s First Law).  From equation (1), the Law of Areas, and 

Newton’s Law (Acceleration version), we get (cf. equation (3)) 

23
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&&  (4) 

Through a series of transformations, Toeplitz converts the derivatives of r with respect to time to 

those with respect to θ 
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where 
γ

2
4A

p
&

=  and D
A

pDe
γ

24 &

== .  Thus equation (5) defines a conic section and is an ellipse if D 

is such that e < 1, a hyperbola if D is such that e > 1, and a parabola if D is such that e = 1.   

Note: this implies a hyperbola and a parabola also satisfy Newton’s Law.  In fact, going the other 

way, we could argue as in the “Kepler’s Laws ⇒  Newton’s Law” case using a hyperbola (p = -a(1 – 

e
2
) > 0) or parabola (p = 2d > 0 where d is the distance from focus to vertex) instead of an ellipse to 

arrive at the inverse square law.  So there is not a strict equivalence between Newton’s Law 

(Acceleration version) and Kepler’s first two laws, but rather with a more general version of Kepler’s 

First Law if we allow all conic sections for orbits. 

Assume Kepler’s first two Laws, then 

Kepler’s Third Law ⇔⇔⇔⇔ γγγγ constant for all planets 

Proof: Assuming Kepler’s first two laws (in particular, the path is an ellipse), the line joining a planet 

to the sun sweeps our the entire area of the ellipse in a period T of one revolution.  Thus for an ellipse 

with semimajor axis a and semiminor axis 21 eab −= and corresponding area abπ, the constant area 

rate of change A&  is 

T
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Therefore Kepler’s Third Law ( 23
Ta ∝  for all planets around the sun) ⇔ γ is constant for all 

planets. QED 

Note: though γ is now shown to be independent of the planets, it still depends on the sun.  So if 

we look at say the similar system of the moons of Jupiter revolving around Jupiter, they satisfy a 

similar inverse square law but with a different constant γ whose value depends on Jupiter. 



 Kepler’s and Newton’s Equations 

Kepler and Newton 180521.doc  6 

Assume Kepler’s three Laws and Newton’s 2d Law of Motion, then  

Newton’s 3d Law of Motion ⇔⇔⇔⇔ every γγγγ is proportional to its (“sun”) mass. 

Proof: Newton assumed the force of gravity was mutual and so for a pair of objects each one could 

assume the role of sun and the other the planet.  This means the force exerted by the first on the 

second is oppositely directed along the line between them to the force exerted by the second on the 

first. 

 

Setting the unit vector r̂  arbitrarily from the first object toward the second, from Newton’s Law 

(Acceleration version) we have the following accelerations 

ra ˆ
2

1
2

r

γ
−=   and  ra ˆ

2

2
1

r

γ
=  

of the second and first objects, respectively, caused by the other object (acting as “sun”), where the 

dependencies of the γ’s on the “sun” object in each case are made explicit.  By Newton’s Second Law 

of Motion we have the corresponding expressions for the forces 
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, a constant.   

Thus the forces are equal and opposite if and only if the γ’s are proportional to the masses of their 

respective objects (“suns”).   QED 

 

 

Thus the magnitude of the force of gravity between two objects with masses  M1 and M2 separated 

by a distance r is given by 
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where G is a constant independent of the masses.  This constant of proportionality G is Newton’s 

Universal Gravitation constant.  Therefore we have 

 

Assume Newton’s Laws of Motion, then 

Kepler’s Laws ⇔⇔⇔⇔ Newton’s Universal Law of Gravity 
 

Note:  A similar discussion as the above is given in Bressoud [3], Section 3.3 Orbital Mechanics.  

In fact Bressoud has a nice, completely vector approach to “Newton’s Law (Acceleration version) ⇒ 

Kepler’s First Two Laws” which avoids solving differential equations. 

 

Significance 

In the above discussion I have tried to flag at each juncture just what specific assumptions apply 

at that moment.  This enables us to see some internal equivalences.  Basically, radial acceleration of 

an object is equivalent to equal areas swept out in equal times.  And an object’s path being a conic 

section is equivalent to the radial acceleration being toward the sun and satisfying the inverse square 
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law.  The harmonic law is equivalent to the inverse square law being independent of the object.  And 

then amazingly, the innocuous 3d Law of Newton’s Laws of Motion (every action has an equal and 

opposite reaction) is equivalent to there being a universal constant of gravity G that does not depend 

on the sun, planets, or any objects with mass attracting one another.  This is essentially where the idea 

of the apple falling to the earth is subject to the same law as the planets falling towards the sun.   

But there is something even more profound in all this.  All the laws discussed above had 

mathematical representations, even though they were referring to physical situations.  And the 

derivations of the relationships between these laws, including the equivalences, were all done solely 

with mathematics and without any physical reasoning.  The physical phenomena that Kepler observed 

and codified mathematically in his laws turn out somehow to be inherent in the mathematical 

properties of Newton’s laws (of motion and of gravity), which also represent physical phenomena 

(see Figure 3). 

I remember when I worked at the Geophysical Fluid Dynamics Laboratory there was an 

oceanographer who wrote down a particular form of the Navier-Stokes equations that represented the 

fluid motion of certain ocean regions.  He manipulated the equations and produced successive 

transformations into alternate forms.  When I asked him to show me the mathematical derivation, he 

admitted he did it “physically,” that is, each term in the original equation had a physical meaning to 

him and he knew physically how these terms transformed into other terms that represented physical 

phenomena.  In other words, to him the partial derivatives and other mathematical symbols in the 

equations were just labels or names of physical entities and he moved from one physical entity to the 

next using physical reasoning.   

The derivation above of the equivalence of Kepler’s Laws and Newton’s Law of Gravitation was 

not like that.  It was all done mathematically.  There was no physical mechanism indicated that would 

show how these two Laws were equivalent, only mathematical manipulations.  That is the great 

mystery of mathematics and physical reality. 

And that is the great revolution spawned by Newton and his laws.  After Newton, mathematics 

became the primary tool for describing nature and for “explaining” it.  That is, predictions and 

relationships between physical phenomena were all eventually captured in mathematical structures 

 

Figure 3    Mathematical Representation of Physical Reality 
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and became subject to mathematical rules, not physical ones.  Often, like with Kepler, physical 

phenomena would be observed and crude mathematical notions applied, which often did not quite fit 

into current mathematical thinking.  But soon the mathematicians worked out a mathematical 

structure with its own logic to organize these new ideas.  Such was the case with Dirac’s delta 

function, which was zero everywhere except at the origin, where it was sufficiently “infinite” so that 

its integral over the whole real line was 1.  Schwartz’ theory of distributions was developed to make 

sense out of this “function.” 

More often, however, the order of precedence is reversed, that is, new physical phenomena seem 

to occur and soon a previously created mathematical concept turns out to be applicable.  An example 

is Heisenberg’s formulation of quantum mechanics in which he expressed quantum notions with 

arrays of elements and defined a type of multiplication of these arrays.  Soon someone told him he 

was actually using the theory of matrices invented by the mathematician Cayley decades before.
4
  

Einstein discovered that he needed to consider his spacetime to be a curved geometry and his 

mathematical friends pointed him to the work of Riemann in the previous century developing the 

theory of manifolds and the recent work of Levi-Civita on differential geometry.
5
  Of course, there is 

the amazing wedding of group theory developed by Lagrange, Galois, and Lie to modern quantum 

mechanics and the discovery of new particles. 

Ultimately we do not understand why mathematics should permeate physical reality so 

thoroughly. What makes it even more mysterious, as suggested in the previous paragraph, is that 

many of the mathematical concepts “explaining” physical reality were created out of the minds of 

mathematicians, springing from their imagination like some sort of game or artistic creation without 

any thought of physical meaning. 

This mysterious and almost mystical dominion of mathematics in every corner of modern science 

all started with Newton and his amazing mathematical derivation of Kepler’s Laws from his Laws of 

Motion and Law of Gravity. 
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