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I have long been fascinated by Newton’s proof oplégs Equal Areas Law and wanted to write
about it. Of course, others have as well, but hted to emphasize an aspect of the proof that
supported my philosophy of mathematics.

Before | get to Newton, however, | wanted to dischisw Kepler himself justified this law, since
his approach has a number of fascinating histoaspécts to it. | have previously discussed Képler
ellipse ([5]) and in the process of doing that agsh, | came across a number of articles about how
Kepler arrived at his equal areas law. One notaddalt is that even though now we call the ided th
a planet orbits the Sun in an elliptical path wiite Sun at one focus, Kepler’s First Law, and teai
that the line from the Sun to the planet sweepsequal areas in equal times, Kepler's Second Law,
Kepler actually discovered these laws in reversierr

Kepler (1571-1630) presents his research, thegrizamd calculations in his marvelous and
expansive bookAstronomia Nova1609), theNew Astronomy(see [3] for a nice detailed visual
explanation of the ideas in the book). What makesbook so fascinating (and equally hard to read
— aside from the Latin) is that rather than justsgnt his final results, as would happen in current
research, Kepler describes the lengthy path ofdasoning which included all the blind allies and
misconceptions. In a way, the book was a massiuengl of his research. So he began with the
assumptions of his times bequeathed from the Greaks2000 years before and codified by Ptolemy
(100 — 170 AD) in his booKThe Almagest It basically claimed the earth was the centethef
universe and all the planets, Sun, and stars hateund it attached to concentric spheres, so that
their motion was circular. Ptolemy acquiescechdlready observed irregularities in the motion of
the planets (especially the retrograde motion)inyuiding the idea of epicycles, circles that rafate
on other circles. So he preserved the all-impor@rcular motion, but at the cost of added
complexity.

Thus Kepler began his researches with this depeedem circular motion. He did deviate in one
very important respect: he followed the Copernigamovation of having the earth and the other
planets orbit the Sun rather than having the Suhthe planets other than the earth orbit the earth.
One of the other Greek principles was that the gilawere supposed to orbit the circles at uniform
speeds. But Kepler already knew that when a plaastclose to the Sun it moved faster than when it
was further away, so that the motion was not unifafter all. He began to consider all kinds of
manipulations to try to reconcile these behavioid Greek theories.

Kepler's Derivation

Probably the clearest explanation of Kepler's ecquaas law is given by Peter Barker and
Bernard R. Goldstein, which | excerpt here (Barkeal. [1] pp.67-70). | have omitted the original
footnotes for readability, replaced the figures digdire numbers with my colored versions, and
added my own emphasis for later discussion.

... In chapter 32, Kepler presented a geometrical argument to pgravé&he swiftness at
perihelion and the slowness at aphelion are proportioned apgateky as the lines drawn from
the centre of the world to the plandte centre of the world, for Kepler, is the Sun. Strictiys t
proof is applicable only at perihelion and aphelion, as ieddp upon similar triangles that cease
to be similar for positions outside the apses. Howeventaiiematical demonstration is a crucial
step forward. Here Kepler demonstrated a result taken as an laiearlier writers. Although he
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demonstrated the result only in a special case, he noted thaeghiée applied as a good
approximation throughout the orbit. Kepler saw the resatitas an axiom but as the outcome of
the operation of physical causes, which he proceeded to discuss.

The next six chapters of thestronomia Novantroduce the idea of @rtus motrixgenerated
by the Sun and responsible for the overall pattern, if metditails, of planetary motion. The
nature of Kepler'sirtus motrixremain controversial. ...

Regardless of which of these readings is correct, near theegpiator the force diminishes as
if confined to a plane. Taking the emanation from the Sunfa®a@ quantity, its intensity will
diminish in proportion to the circumference of the successilgber circles it crosses while it
spreads itself into the surrounding ether. Hence, wheregeerttanation encounters a planet it
exerts a force inversely proportional to the planet's distanoetfre Sun.

For Kepler the application of a force creates a velocity, overcotinengatural tendency of an
object to remain at rest. Continued motion requires contiapptcation of force. On its own the
solarvirtus motrixwould move the planets in circles, at constant speed, centrdéek @uh. But
Kepler has been at pains to establish that if the planets arettakeme circular orbits, they are
eccentric to the Sun, and that the linear velocity of the planetsvidaroughout this motion. The
distance-velocity relation may describe the variation in velo&epler has shown in chapter 32
that it applies accurately at the apses. However, this relationrmbesxplain why the planet
should approach and recede from the Sun at different peinits imotion. Kepler therefore
introduced a second force s insita,located in the planet itself. This force explains the motion
of the planet along the radius vector from the Sun, and cesbiith the solavirtus motrixto
produce the planet's trajectory.

4. The area law

Kepler immediately applied these physical ideas to calculate plargsitions in the final
chapter of Part lll, chapter 40. ... To clarify his discussi@introduce Figure 1: consider the
areaA; defined by lines drawn from the Sun to the ends of a samadl representing the motion
of a planet. Note that the Sun is not the centre of the circhehich the planet is supposed to
move (but rather it is the physical basis for its motidmpugh thevirtus motrix). Then, at
aphelion and perihelion, where the motion of the planet ipepelicular to the radius vector
drawn from the Sun, the area of this small triarfgleill be proportional to the product of the arc
s and the length of the radius vecthr[from the sun] Strictly this relation will be valid only at
the aphelion and perihelion (as Kepler was aware).

Figure 1. The area law at aphelion. Note that tt Figure 2. The derivation of the area law.
Sun is located at point S.
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Next construct the motion of the planet around a porabnts orbit, by adding small
segments like that already defined (see Figure 2). We ther hesgof lengtts, and we seek the
variable time intervals that correspond to each of these equi@natbs. Kepler calls these time
intervalsmorae:in effect, they represent the time it takes a planet to movet @istance along
its trajectory. Following the proportionality already eststidid, the sum of the areas Ay, As, ...

, A will be proportional to the sum afth; s, sa&; ... , s¢ wheredy, d,, ds, ... , ¢ are the lengths
of the corresponding radial vectors, i.e.

Al +A+ .. +A U st +sth+ ... +sd (2)

... Now Kepler believed, as we have already seen, that the linear velbeifglanet varies and is
inversely proportional to its distance from the SHence in each term in the above series we
may replace the distanck (where 1_<j < i) by the reciprocal of the corresponding velocity
producing a quotiens/yi Each of these quotients represents the distance travelled piaties
along a small portion of its orbit divided by the veloaiigh which it traverses that portion of the
orbit, and thus defines the time taken to traverse that pasfithe orbit. That is

S S S
+A +..+ Z+ 24+ 2)
AvA ARSI E S
U L+t + ...+ (3)

Therefore, the ratio of the sum of the ar@asnaking up a given segment of the orbit, to the
area of the whole orbitAj, will be equal to the ratio of the sum of the cop@sding timesg;, to
the time required for the planet to complete ormtothat is the period of the pland)(That is

A+A2;...+A:t1+t2;...+ti @)

Now let us define
a=A+A+ .. +A
and
H=t+th+ ...+t

Then, we can rewrite equation (4) as

a. I8
1 =_1 (5)
AT

The correlation established here between areagirmedintervals is the same one we recognize,
for the lcase of an elliptical orbit with the Sunaate focus, as the Second Law of Planetary
Motion.

Now there are a number of remarkable things aliasifppresentation.
No Law of Inertia

The sentences above, “For Kepler the application &drce creates a velocity, overcoming the
natural tendency of an object to remain at resnti@oed motion requires continued application of
force.” means that at this point Kepler subscrib®the Scholastic idea of “impetus” and not to the
“law of inertia”, which was codified in Newton’s 5t Law of Motion in 1687, after an earlier hint by
Galileo (1564-1642) in 1613 and closer notion byn&k®escartes (1596-1650) in 1644. The Law of
Inertia claims that a body at rest will remainedtror a body moving along a straight line at camist

' Notice that equation (5) implies thak; = (AT)D¢; so that equal areas are swept out in equal tirS@sce

Kepler's argument did not make explicit use of ¢ireular orbit, it is inferred that it would worlof a non-
circular orbit as well, such as an ellipse.
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speed will continue to move along that line at t@istant speedhlessit is acted upon by a force, in
which case it will change its state of rest or moti The idea that objects move because they were
alreadymoving was a huge change of viewpoint. So bodieddcbe moving without experiencing a
force, contrary to Kepler's statement.

Force between the Sun and Planets causes Planetdftove

As shown in Figure 2 above, at this stage of Képlérinking the planet moved in a circle
(required by Ptolemy) but not centered on the Siihe idea at the time was that the motion of
planets was based on the center of their circulzitso But assuming a heliocentric theory meaat th
the sun became the main actor and so it must baghkat of their motion. Kepler then posited
physical forces to bring about this motion. Thigswquite an innovation by Kepler and is clearly a
precursor to Newton’s Theory of Gravitation.

Speed of Planets Inversely Proportional to Distancgom Sun

By arguing that the force between the Sun and rmeplaas restricted to a plane, he could claim
its intensity fell off as the inverse of the distarrather than the distance squared. Linking dheef
directly to the speed along the circle meant theedpvaried inversely as the distance from the Sun.
Of course, later Newton would tie the force dingdd the acceleration of the planet, not its veigci
and arguing in three dimensions, the intensityhef force fell of as the square of the distance from
the Sun (since the surface area of a sphere ofargriatensity is proportional to the radius sqdare
Thus Newton had the acceleration of the planehbersely proportional to the square of the distance
from the Sun.

Kepler Anticipates Calculus

Kepler credits to Archimedes (c.287 — ¢.212 BC)itlea of taking small increments along the
orbit of the planet, making a sequence of approttona, and then imagining the result when the
increments are shrunk infinitesimally. This apmtoanticipates the integral calculus toward the end
of the century.

There are, of course, numerous problems with Keptirivation, especially the approximations,
but it is an impressive line of reasoning neverhsl

Newton’s Derivation

We turn now to the way Newton (1643-1727) establiskhe equal areas law. Newton does
employ ideas from the newly minted differential amdegral calculus, but the heart of the
demonstration is the gold standard at the time waflilean geometric reasoningWe shall do the
same, since it does make the result amazingly abvio

Just for the record, here is Newton's own proofrirthe Principia ([4] pp.83-104) (BOK I
ProPOSITIONI). We have also included his statement of the ddvinertia (Law 1), as well as the
parallelogram law of the vector addition of for¢E®ROLLARY ).

AXIOMS, OR LAWS OF MOTION.
LAW I. [Law of Inertia]

Every body perseveres in its state of rest, or mfoun motion in a right line, unless it is
compelled to change that state by forces impreszgon....

> Based on Euclid’s bookhe Elementsvritten about 300 BC.
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COROLLARY 1.

A body by two forces conjoined will describe thaegdinal of a parallelogram, in the same time
that it would describe the sides, by those forqesta

If a body in a given time, by the force M impressgurt
in the place A, should with an uniform motion berieal - B
from A to B ; and by the force N impressed apathim same
place, should be carried from A to C ; complete 1
parallelogram ABCD, and, by both forces acting thgg it
will in the same time be carried in the diagonahirA to D.
For since the force N acts in the direction of tine AC, C D
parallel to BD, this force (by the second law) witht at all
alter the velocity generated by the other forceby which the body is carried towards the line
BD. The body therefore will arrive at the line BD ithe same time, whether the force N be
impressed or not ; and therefore at the end oftiimet it will he found somewhere in the line BD.
By the same argument, at the end of the same tid¥ ill be found somewhere in the line CD.
Therefore it will be found in the point D, wherethdines meet. But it will move in a right line
from Ato D, by Law I ...

Book|. OF THEMOTION OFBODIES
SECTION II. Of the Invention of Centripetal Forces
PROPOSITION |. THEOREM 1.

The areas, which revolving bodies describe by rddiwn to an immovable centre of force do lie
in the same immovable planes, and are proportibm&he times in which they are described.

For suppose the time to be divided into eqt
parts, and in the first part of that time let thadi
by its innate force describe the right line AB lhet
second part of that time, the same would (by L
l.), if not hindered, proceed directly to c, alathg
line Bc equal to AB ; so that by the radii AS, B!
¢S, drawn to the centre, the equal areas ASB, E
would be described. But when the body is arriv
at B, suppose that a centripetal force acts at ¢
with a great impulse, and, turning aside the bc
from the right line Bc, compels it afterwards
continue its motion along the right line BC. Dra
cC parallel to BS meeting BC in C ; and at the €
of the second part of the time, the body (by Cor
of the Laws) will be found in C, in the same pla
with the triangle ASB. Join SC, and, because g
and Cc are parallel, the triangle SBC will be eqiFigure 3  Original Principia Diagram
to the triangle SBc, and therefore also to lie
triangle SAB. By the like argument, if the centiigdeforce acts successively in C, D, E. &c., and
makes the body, in each single particle of timeajdscribe the right lines CD, DE, EF, &c., they
will all lie in the same plane : and the triangl@Cswill be equal to the triangle SBC, and SDE to
SCD, and SEF to SDE. And therefore, in equal tiregsal areas are described in one immovable
plane : and, by composition, any sums SADS, SAF$hase areas, are one to the other as the
times in which they are described. Now let the nemdf those triangles be augmented, and their

® The idea of the parallelogram law is similar ke teffect of trying to row across a flowing riveiThe

combination of the motion of the forward rowing andrent of the stream results in landing on thposjite
shore further downstream than originally intended.
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breadth diminishedh infinitum ; and (by Cor. 4, Lem. lll.) their ultimate peritae ADF will be a
curve line : and therefore the centripetal forgewhich the body is perpetually drawn back from
the tangent of this curve, will act continuallyndaany described areas SADS, SAFS, which are
always proportional to the times of description|l,wn this case also, be proportional to those
times. Q.E.D.

Newton'’s exposition should be clear in itself, lug shall make it a bit more explicit. A number
of others have already presented Newton’'s demdiustrin all its simplicity. The earliest, and one
of the best, | recall was by Richard Feynman inNtessenger Lectures he gave in 1964 at Cornell
University. | was lucky enough to attend thesduess, which have now been made available on
Youtube ([2]). They were also captured in a bobike Character of Physical LawThe particular
section on Newton's proof of the equal area lawinisthe second lecture, “The Relation of
Mathematics to Physics” ([2] pp.40-43).

The idea is to realize that if the Sty No centripetal force pulling the planet P
exerted no force on the moving p|anet’ th : toward the Sun S means the _planet travels
the planet would proceed in a straight lii | 2tff:;f::";jfﬁfg:’;ﬂ:l':fig:':n"c’ebsyi;h:qﬂ
at constant speed, according to the Law time intervals.

Inertia (LAW 1). As seen in Figure 4, thi

line joining the Sun to the planet woul
sweep out equal areas in equal timr |
because all the triangular wedges have
same altitude and their bases, represen
the distances traveled in equal intervals
time, are the same length.

We now consider the effect of ; 9
centripetal force pulling the planet towar — "} ” > >
the Sun. With Newton we will conside
the force acts in impulses at discre
equally spaced small time intervals,
between which times the planet travels
according to the Law of Inertia. Figure !
based on Newton’s original figure (Figur
3), illustrates the situation. We have add
(red) vectors to indicate the direction ar
intensity of the impulse forces. The plan
is moving from A to B in the first interva
of time and intends to move straight ahe
according to the Law of Inertia oin the
next interval of time. But the plane
experiences the impulse force at B, whic
when combined with its motion ta
according to the Parallelogram Law, caus
the planet to move to C. At C the plan
experiences another impulse force that,
the Parallelogram Law, redirects it to [
and so on. As the time intervals chosen
taken to be shorter and shorter, the brol
line trajectory of the planet approaches t
path of a smooth curve, the orbit of trS
planet under the effect of a continuol Figure 5 Curved Motion from Centripetal Force ard
centripetal force. Parallelogram Law

Figure 4 Equal Areas are swept out at equal time
intervals with straight line uniform motion.
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7 same Base and

/ Altitude = Equal
_Areas

Figure 6 Constant Straight Line Motion Implies Figure 7 Same Base and Altitudes Implies
Equal Areas Equal Areas

Now we consider what happens to the line fr¢
the Sun to the planet as it traverses its orbigaiA we
consider the discrete equally spaced intervalsnod t
as shown in Figure 6. Again the planet trav 9= ,
according to the Law of Inertia along a straigineli A
from A to B. Suppose it continues as intendedoomn t i 4
Then as shown in Figure 6 we have the situat
represented in Figure 4 where the two trianguleasu
swept out by the line from the Sun to the planeteh
the same area. Figure 7 shows the situation #feel
planet experiences the impulse force at B and mwve ;i & 7 /
C. The green triangle represents the area nowts\ i o
out by the line from the Sun to the planet. But
shown in the figure, its altitude and base arestiae
as that of the previous green triangle (now yelloy
and therefore so is its area. We continue in 1 g
manner throughout the rest of the path of the plare
shown in Figure 8. And so we see that the trias( Figure 8
swept out by the line from the Sun to the planetal
equal and for equal intervals of time. Again astilne intervals are taken to be smaller and smalle
the areas of the triangles approximate closer émskcthe area continuously swept out by the line
from the Sun to the planet moving along is smoatitothus preserving the sweeping out of equal
areas in equal time intervals.

Implications

I hope the plethora of figures does not obscuresitmglicity of Newton’s proof of Kepler's equal
areas law. The key is the use of the propertiggarigles from the geometry of Euclid, namely that
all triangles that have a base of the same lenytig lon the same line and with vertex opposite the
base also lying on the same line parallel to tteeliwmve the same area. It is true that this gemmet
property is wedded to the parallelogram law degvirom physical observation, which combines the
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intent of the planet to move in a straight lineading to the Law of Inertia with the constant pofl
the planet toward the Sun. The resultant pathaifan becomes the orbit of the planet.

The point | want to make here is that it looks If{gysical phenomena are behaving the way they
do becauseof some simple mathematical relations (Euclid’'sorgetry) that were developed
independently of physical considerations. Thisast mysterious. There are those who insist that a
of mathematics is so dependent on physical rediay these connections should not be surprising.
But | do not share this philosophy. Nor do | bediet the other extreme as some do, such as Max
Tegmark, that what we interpret as physical redftyn fact just mathematics and mathematical
objects. Of course | believe mathematics origithateour perception of physical reality and that it
periodically gets stimulus from the conundrums bygcal reality, but its modus operandi is totally
different from the experimental approach of thegitgl sciences. The results of mathematics stem
from therules of logical argumentand notphysical causalitywhich is our customary explanation
given for physical behavior. So | find these sewlyi independent connections surprising and
wonderful. A classic essay on this subject is “Thweasonable Effectiveness of Mathematics in the
Natural Sciences” by Eugene Wigner ([6]).

Now it would not be quite fair to leave the subjedth the idea that there is no physical
explanation for the equal areas law, though “exgian” may depend on one’s familiarity with
concepts in physics. In fact, modern presentatidriiéepler’'s equal areas law cite the concept ef th
conservation of angular momentum. This raises poimts: why are there conservation laws, and
what does angular momentum mean? The consentatdanare wonderful things in themselves and
become quite mysterious in their seeming relatignghgroup theory from abstract algebra. So their
physical causal purity is perhaps also somewhatediby mathematics. And then there is the idea of
angular momentum, which | personally have alwaysntba bit hard to fathom. Perhaps | will
attempt another essay someday trying to estabtisimtaitive foundation for this phenomenon and
how it can “explain” the equal area law. As of ndNewton’s geometric proof is still my favorite.
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