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Kepler’s Ellipse   
(17 August 2016, rev 27 December 2016, rev 3 August 2018) 

Jim Stevenson 

 

The Problem: “The Compressed Circle” 

I had been exploring how Kepler originally discovered his first two laws and became fascinated 

by what he did in his Astronomia Nova (1609), as presented by a number of researchers.  Among the 

writers was A. E. L. Davis.  She mentioned the following regarding Kepler’s search for the curve 

describing the planetary orbits in her Kepler's Planetary Laws [Davis 2006]: 

Figure 3 

However, such a construction had never been invented before and Kepler did not have the 

slightest idea what curve the above relationship represented. However, he did know that if the curve 

were an ellipse, the typical point P would satisfy a vital condition that he had come across in the work 

of Archimedes: On Conoids and Spheroids Prop.4 (where it was stated as if well known even then 
1
):  

PH/QH = BF/BC 

There is good reason to believe that this was the earliest plane definition of an ellipse, (because it 

can be derived directly from a section of a cone in three easy steps [Davis 2007]), as well as the 

definition most commonly, if not exclusively, used by Kepler's contemporaries: it is just the ratio-

property of the ordinates. Some people nowadays will recognize it as the 'compressed circle' 

property. 

Davis’s proof in the July 2007 Mathematical Gazette is behind a paywall.
2
  The abstract says:  

This article came about as a response to the Supplement to the Gazette Number 514 which 

consists of an extended version of Sir Christopher Zeeman’s Presidential Address to The 

Mathematical Association at York in 2004. … It contains a short section on conics, which seemed 

relevant to a topic I am already investigating: the level of knowledge of conic geometry 

potentially available to the Greeks before the time of Apollonius. Professor Zeeman has 

                                                      
1
  JOS:  Prop 4: “The area of any ellipse is to that of the auxiliary circle as the minor axis to the major.” So the 

ratio is not what is proved in the Prop.  In fact, the ratio is used to prove the Prop, that is, it is assumed 

without proof there, just as Davis suggests (see On Spheroids p.113 [Heath 1897, p.303]).  So Kepler may 

have gotten the idea from the proof, but it is not clear where Archimedes got it from. 
2
  JOS:  After I wrote the original draft of this article and carried out some correspondence with Dr. Davis, Dr. 

Davis was kind enough to send me a copy of her 2007 paper.  I will refer to it later in footnotes, but I 

decided to preserve the approach I had already taken.  
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encouraged me to publish the first stage of this research in the Gazette to provide a background to 

his discussion. 

Apollonius (of Perga c.262 BC – c.190 BC) is a younger contemporary of Archimedes (c.287 BC 

– c.212 BC) and both followed Euclid (fl. 300 BC).  Heath in his Works of Archimedes (1897)  [Heath 

1897] compares the two as follows (Preface p.v): 

Michel Chasles has drawn an instructive distinction between the predominant features of the 

geometry of Archimedes and of the geometry which we find so highly developed in Apollonius. Their 

works may be regarded, says Chasles, as the origin and basis of two great inquiries which seem to 

share between them the domain of geometry. Apollonius is concerned with the Geometry of Forms 

and Situations, while in Archimedes we find the Geometry of Measurements dealing with the 

quadrature of curvilinear plane figures and with the quadrature and cubature of curved surfaces, 

investigations which "gave birth to the calculus of the infinite conceived and brought to perfection 

successively by Kepler, Cavalieri, Fermat, Leibniz, and Newton." 

And this (Chapter III.  The Relation Of Archimedes To His Predecessors. p.xxxix): 

… he was no compiler, no writer of textbooks ; and in this respect he differs even from his great 

successor Apollonius, whose work, like that of Euclid before him, largely consisted of systematising 

and generalising the methods used, and the results obtained, in the isolated efforts of earlier 

geometers. There is in Archimedes no mere working-up of existing materials ; his objective is always 

some new thing, some definite addition to the sum of knowledge, … 

Seeking the Solution 

In any case, as far as I can discover, it appears that neither Archimedes nor Apollonius (nor 

Euclid) proved the “compressed circle” property of the ellipse.  Davis suggested the result follows 

directly (and easily!) from the conic section definition of an ellipse.  Since her approach is hidden, I 

will have to consider that at some point on my own (see below p.4).  Alternatively, I have thought of 

another way that does not use the conic section definition of ellipse (as far as I know), but it still has 

gaps. 

Desiring an ellipse with semi-major axis a and semi-minor axis b, we take a circle of radius a and 

rotate it about a diameter as axis by an angle θ  (see Figure 1 (a), only semicircles are shown – in 

blue), where cos θ  = b/a (see Figure 1  (b)).  The resulting figure is sort of like a hard taco shell.  

Then for any point x along the diameter (measured from the center of the circle) raise a perpendicular 

(a) 

 
(b) 

Figure 1    Compressed Circle Curve 
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until it intersects the circle and designate its length h.  Then project the rotated image of h back down 

onto the original circle.  The projected point on the ordinate h will be a distance y from the base of the 

perpendicular.  It is easy to see that y = h cos θ  = h b/a.  Since x was arbitrary, the resulting curve, the 

locus of points (x, y), represents the original circle of radius a compressed everywhere by a factor b/a. 

The problem at this point is that we do not know if such a curve is in fact an ellipse.  I have 

searched to see if the ancients already noticed that the projection of a rotated circle would yield an 

ellipse, and I could find no corroboration.   

My Construction:  Compressed Circle ⇔⇔⇔⇔ Ellipse Parametric Equations 

Now it happens that the curve is an ellipse, but we arrive at that conclusion from this construction 

via analytic geometry and a parametric representation of the curve, which is probably anachronistic at 

this stage, since coordinate geometry (from Descartes 1596–1650) arose towards the end of the period 

of Kepler’s work, almost 2000 years after Archimedes and Apollonius.  This can be seen via an 

augmentation of Figure 1 (see Figure 2). 

 

Figure 2    Basis for Parametric Equations for an Ellipse 

Draw a radius from the center of the circle to the point where the ordinate h intersects the circle.  

Let β be the angle this radius makes with the diameter.  Then  h = a sin β , so y = h (b/a) = b sin β.  

Similarly x = a cos β.  So we have the parametric equations: 

x = a cos β 

y = b sin β 

It is easy to see that  x
2
 / a

2
 + y

2
 / b

2
 = 1, which is the standard (un-translated, un-rotated) coordinate 

definition of an ellipse with semi-major axis a and semi-minor axis b.   

And conversely, clearly y / h = b / a, which proves this parametric formulation of the ellipse 

satisfies the compressed circle property.  So the parametric equation formulation for an ellipse is 

logically equivalent to the compressed circle property.  In fact Davis in her discussion of Kepler 

argues in this direction, from compressed circle to parametric equations.  So to avoid circular 

reasoning, we must have another way of showing the compressed circle curve is an ellipse, preferably 

using plane geometry of the Greeks and not analytic geometry of the 17
th
 century.  Davis argues from 

the conic section definition, but somehow I would like to use the rotated circle formulation directly.  

So that is my gap at the moment. 
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Rotation Angle θθθθ 

One final note about the parametric equations. Figure 3 shows more explicitly the setting for the 

parametric equations derived from the previous figures.  It also shows where the foci of the ellipse, F1 

and F2, are located and their relationship to the semi-axes of the ellipse.  From the relationship 

cos θ = b/a used in the rotated circle generation of the ellipse, we see that the angle θ also appears as 

shown in Figure 3.  (Since any point on the perpendicular bisector of the diameter of the circle is 

equidistant from both foci and since the sum of the distances from any point on the ellipse to the foci 

is 2a, the point on the semi-minor axis of the ellipse is a distance a from each focus.) 

 
Figure 3    Parametric Equation Diagram 

According to an article by J. Hwang [Hwang 1998], when QC was perpendicular to the diameter, 

Kepler mistakenly thought the angle ∠CQF1 was θ.  (In general, as Q moved around the circle, he 

called ∠CQF1 the optical angle.)  Given how close the Martian orbit was to a circle (eccentricity e = 

0.093 (Wikipedia 2016)) it is not surprising perhaps that he would make this mistake (approximation).  

For this value of eccentricity we get the compression factor cos θ  = b/a = (1 – e
2
)

½
 ≈ 0.9957.  

According to Hwang, Kepler found θ  = 5° 18' = 5.3° and cos 5.3° = 0.9957.  So Kepler’s result 

agrees with our current estimate, at least to four decimals. 

Solution Found  

Ellipse Conic Section ⇒⇒⇒⇒ Compressed Circle (Plane Geometry) 

Frustrated in my attempts to prove the compressed circle property of ellipses directly from the 

conic section definition using only arguments from plane geometry or from my “rotated circle” 

construction, I returned to Kepler’s Astronomia Nova, in particular Chapter 59 Protheorem I where 

Kepler is supposed to use the compressed circle property to prove his construction is an ellipse (see 

below p.8).  My Latin is not good enough, so I finally decided to acquire Donahue’s translation 

[Donahue 2015].  Kepler provided some clues in his statement of the compressed circle property of 

ellipses (Protheorem I), namely,  

Using Book I page 21 of the Conics of Apollonius, Commandino proves this in his 

commentary on Proposition 5  of Archimedes’ On Spheroids. 

Donahue says the reference cited is actually “Book I Proposition 21” in Apollonius’s Conics (and 

for some reason Kepler cites Prop 5 in Archimedes instead of Prop 4, which is the correct one, at least 

according to Heath).  But mentioning that Commandinus in his 1566 translation of Apollonius’s 

Conics had proved the results was another clue.  Alas, I could find no reference for it.   
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That left only the citation of  “Book I Proposition 21” in Apollonius’s Conics.  So I obtained 

Heath’s translation of that work [Heath 1896].  At first I could not make any sense out of it or how it 

was relevant.  For an ellipse, it basically says [Heath 1896, p.19]: 

Prop 8 [I. 21.] If AC is the diameter of ellipse AMC, and if M 

is any point on the circumference of the ellipse, and further if 

a perpendicular is dropped from M down to the diameter AC 

intersecting at point L, then  

ML 
2
 ∝∝∝∝ AL . LC 

where “∝” means “is proportional to” and the reference “Prop 8 

[I. 21.]” is Heath’s numbering with the Apollonius numbering in 

brackets.   

This seemed a strange relationship at first, and certainly not 

the compressed-circle formulation.  The proof of Prop 8 [21] 

actually relied on figures, constructions, and arguments presented 

in the preceding propositions.  I am still working on the 

derivation.  At one point Apollonius uses a similar but more 

arcane intermediate relationship to define the ellipse.  The 

relationship is clearly derived directly from the conic section form for the ellipse (but not in any “3 

easy steps” as suggested by Davis).    And so the relationship in Prop 21 above is close to the Greek 

formulaic definition of the ellipse, but it is not explicitly the compressed-circle formulation. 

Then I recalled some plane geometry, and the final compressed-circle ellipse relation popped out 

effortlessly.   

Apollonius Prop 21 Implies Compressed-Circle Ellipse 

We add the auxiliary circle AKC to the original ellipse 

AMC having the same diameter AC.  From plane geometry 

(half angle of inscribed angle on a circle) the angle AKC is 

a 90° right angle.  Then the acute angles α and β are 

complementary (add up to 90°).  But that also means the 

perpendicular KL divides angle AKC into the same angles 

α and β.  Therefore, triangles AKL and KLC are similar 

and we have  

AL : KL = KL : LC 

or  

 KL 
2
 = AL . LC. (*)

3
  

Now apply the relationship from Prop 21 to get 

ML 
2
 ∝ AL . LC = KL 

2
 

                                                      
3
  JOS:  It turns out that relation (*) for circles is used extensively by both Apollonius in his proof of Prop 21 

and by Davis in her 2007 derivation of the compressed circle relation for an ellipse from its conic section 

definition.  Apollonius cites the relation without proof, but Davis justifies it via Euclid Book III Prop 35.  

My proof of (*) uses Euclid Book III Prop 20, but it also uses similar triangles, which don’t appear until 

Book VI.  That may be a problem, even though Davis also uses similar triangles in her proof later on.  So 

my approach here does not seem that far off. 

 

Figure 4    Prop 21 Ellipse 

 

Figure 5    Prop 21 ⇒⇒⇒⇒ Compressed Circle 
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So ML 
2
 / KL 

2
 = constant for any choice of M, in particular when MH is the semi-minor axis b of 

the ellipse and KH is the semi-major axis a.  So ML / KL = b / a for any point M on the ellipse, which 

is the compressed circle property for the ellipse.  At last! 

Kepler’s Ellipse Construction 

Now that the issue of the compressed-circle property of ellipses has been settled, there is another 

fascinating aspect of the Davis excerpt given at the beginning of this discussion, and it is portrayed in 

the Figure 3 that accompanies the excerpt.  I have reproduced this figure in color with various values 

attached (see Figure 6).  The purpose of the figure was to show how Kepler arrived at the curve for 

the orbit (of Mars), and how he then computed the distance r from the Sun (focus F1) to the position 

of the planet P on the orbit. As Davis indicates, Kepler had been experimenting with various circular 

arcs centered on the Sun and where their end points fell within the auxiliary circle.  With each choice 

he would compute the corresponding orbit and see how well it fit his data from Tycho Brahe.  The 

choice that fit the data best was the arc shown in Figure 6 intersecting the ordinate to the auxiliary 

circle at P.  This arc was defined by first taking the tangent to the auxiliary circle at Q and then 

extending a line from the Sun (F1) parallel to the line with angle β and so perpendicular to the tangent 

as well. This line was then rotated until the arc generated by its end intersected the ordinate of the 

auxiliary circle through Q.  This point of intersection was the designated point P on the curve 

representing the orbit. 

 

Figure 6    Kepler’s Orbit Construction 

As Davis said [Davis 2006], Kepler did not know at first what this curve was.  “In Astronomia 

Nova Ch. 59, Prop. XI, Kepler set out a rigorous geometrical proof that the typical point he had 

constructed satisfied the ratio-property which defines an ellipse.”  In another paper [Davis 1998] 

Davis provided a modern rendition of this Euclidean plane geometry proof that I will return to later 

(below p.8). 

Kepler Construction ⇒⇒⇒⇒ Ellipse (Analytic Geometry) 

I thought I would approach the proof from the point of view of analytic geometry, via the 

parametric representation for the ellipse and the geometry of the Figure 6.  First, what is the equation 

for r based on Kepler’s construction?  By construction, r is the radius of a circle which at the point of 
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perpendicularity with the tangent at Q is one side of a rectangle whose opposite side along the line 

with angle β has an easily computed length (the purple line), namely, 

 r = ae cos β + a = a(1 + e cos β). (1) 

Now we use the parametric equations for the ellipse to see if we get the same result.  From the 

Pythagorean Theorem we have (using the fact that  b
2
 = a

2
 – c

2
 = a

2
 – a

2
 e

2
) 

 r
2
 = (ae + a cos β)

2
 + (b sin β)

2 

 = a
2
 (e

2
 + 2e cos β + cos

2
 β) + b

2
 sin

2
 β 

 = a
2
 (e

2
 + 2e cos β + cos

2
 β) + (a

2
 – a

2
 e

2
)(1 – cos

2
 β) 

 = a
2
 (e

2
 + 2e cos β + cos

2
 β + (1 – e

2
)(1 – cos

2
 β) ) 

 = a
2
 (2e cos β + e

2
 cos

2
 β + 1 ) 

 = a
2
 (1 + e cos β)

2 

 r = a(1 + e cos β) 

which agrees with equation (1)!  What a roundabout way to come up with the construction for an 

ellipse.  Why did Kepler ever approach the problem this way? 

Epicycle Mindset 

Among the material I have been studying is a copy of Kepler’s original Astronomia Nova in Latin 

published in 1609 [Kepler 1609].  In addition I have been consulting a website with animations and 

translated quotes from the original that seeks to describe Kepler’s book [LYM 2008].  I haven’t 

digested it all yet, but I came across the motivation for the construction in my Figure 6 above (and 

Davis’s Figure 3).  It all came from Kepler’s original approach using epicycles and circular motion in 

general, since that was the prevailing paradigm for almost 2000 years before Kepler. 

Following Greek classic theory about heavenly, uniform circular motion and Copernicus’s 

heliocentric theory, Kepler considered the earth and Mars moving in circles around the Sun.  But it 

soon became evident, because of their non-uniform motion, that the planets did not orbit the Sun in 

circles centered on the Sun.  So Kepler considered an (eccentric) circle offset from the Sun.  One 

  
Figure 7    Early Orbit Model with Epicycles Figure 8    (Colorized) Figure from Chap. 58 

Astronomia Nova 
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method of generating it was to have another circle (epicycle) with its center moving around a circle 

centered on the Sun, with a radius equal to the offset (line between a and b in Figure 7), and rotating 

clockwise at the same angular rate as the center rotated counter-clockwise about the Sun.  This meant 

that the radial line from the center of the epicycle to the planet on its rim always maintained the same 

orientation (vertical in the figure).  The resulting orbit for the planet was another circle offset from the 

Sun circle by the desired amount. 

It was with this epicycle in mind that Kepler kept adjusting the position of the planet relative to 

the epicycle’s geometry, in particular via arcs of circles swept from the line drawn from the Sun 

through the center of the epicycle (Figure 8).  Like the Cheshire cat, the epicycle eventually 

disappeared, but the geometric construct remained to confound me as to its origin.  The fact that the 

intersections of these arcs at points f and n in Figure 8 generate an ellipse is still remarkable and 

surprising. 

Euclidean Constraints 

The epicycles explain some of the construction, but where did the idea of trying to find points by 

intersecting lines with arcs of circles come from?  Why apparently from Euclidean geometry.  I have 

been reading more of Davis’s articles and she makes this interesting comment in 1998 [Davis 1998, 

p.37]: 

It was the accepted custom in those days to cite propositions from [Euclid’s] Elements to validate 

one's reasoning, but Kepler additionally applied the Euclidean method in a totally different way. 

Since the principles of Euclidean geometry — the postulates — did not permit numerical 

measurement of lengths, if a distance were required for a problem its end-points actually had to be 

constructed in advance, as intersections of straight lines and/or circles. I shall show how Kepler 

determined the lengths of the radius vectors he required to generate new planetary paths, by 

identifying their typical points as they turned up in his diagrams, via traditional straight-edge-and-

compasses constructions. 

Kepler Construction ⇒⇒⇒⇒ Ellipse (Plane Geometry) 

After making a number of attempts to prove that Kepler’s construction led to an ellipse, using 

only results from plane geometry instead of analytic geometry, I gave up and resorted to Davis’s 

description of Prop. XI in Chapter 59 of Astronomia Nova given in her 1998 paper [Davis 1998, 

p.42]:   

Identification of the curve produced  

 
FIGURE 4. Third stage. 

 Medial-grade orbit: width BF = b. 
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 AZ = BQ = BC = a, AB = BE = ae. 

 BQ || AZ, AR || KQ, ∠ QBC = β. 
 AP = AK = AZ + ZK  by construction. Hence also AP = QR. 

By applying Pythagoras’ Theorem (Elements I, 47), twice, we obtain:  

QR 
2
 = AQ 

2
 — AR 

2
  

         = (AH 
2
 + QH 

2
) — AR 

2
 

Now from the similarity of ∆BRA and ∆BHQ (Elements VI, 4), we find:  

AR AB 

QH 
= 

BQ 
= e 

Hence,  QR 
2
 = AH 

2
 + QH 

2
 — e

2
 QH 

2 

         = AH 
2
 + (1 — e

2
) QH 

2
 

Now from Figure 4,  AP 
2
 = AH 

2
+PH 

2
.  

But AP = QR by construction, which requires that the following condition be satisfied:  

PH 
2
 

QH 
2
 

= 1 – e
2 

which is constant. 

Now this is precisely the ratio-property of the ordinates by which Kepler had chosen, earlier in 

Ch. 59 (and in a different context), to define an ellipse — so this is the solution to the problem of the 

path. And the property itself is easily derived in the course of establishing the ellipse as a plane curve, 

from its original identification as a section of a cone.
4
 

… Finally, when we place R' and R symmetrically with respect to B so that PE = QR' 
5
 similarly, 

it is easy to see that:  

AP + PE = QR + QR' = 2a, 

which is the constant distance-sum property that provides the basis for the well-known string-

construction for an ellipse: Kepler needed that result in his later work. 

That is some impressive geometric argument.  I will leave the story for now.  

Appendix: Ellipse is Collapsed Circle (Plane Geometry Proof) 

(Update 8/2/2018)  Apparently the story is not quite finished.  I finally came across a purely plane 

geometry proof that an ellipse is a compressed circle.  It turns out not to come directly from Euclid’s 

Elements, but rather from an idea put forth in 1822 by the Belgian mathematician Germinal Pierre 

Dandelin, of Dandelin Sphere fame.  Moreover, instead of involving a conic section directly, it 

employs a section of a cylinder.  And instead of a compressed circle, it involves a stretched circle, 

which turns out to be equivalent.   

The insight to the proof came from watching the marvelous Youtube video by Grant Sanderson 

(3blue1brown [Sanderson 2018]) that demonstrates, using the Dandelin spheres, that the conic section 

definition of an ellipse is equivalent to the one involving the locus of points in the plane the sum of 

whose distances from two fixed foci is a constant.  I am not going to reproduce that proof in full, 

                                                      
4
  JOS:  As Davis showed explicitly [Davis 2007].   

5
  JOS: This takes a bit of manipulation: QR' 

2
 + R'E 

2
 = QE 

2
 = QH 

2
 + HE 

2
 =  QH 

2
 + (PE 

2
 – PH 

2
) = QH 

2
 

+ PE 
2
 – (1 – e

2
)QH 

2
 =  PE 

2
 + e

2 
QH 

2
 =  PE 

2
 + AR 

2
 = PE 

2
 + R'E 

2
 ⇒ QR' = PE.  Amazing! 



Keplers Ellipse 180803.doc 10 

which can be found in the video and in Wikipedia 

(https://en.wikipedia.org/wiki/Dandelin_spheres),  

but I will discuss it a little bit.  

As shown in Figure 9 from Wikipedia, we 

begin by placing a small sphere in the top of the 

cone and then expanding it until it just touches 

the ellipse in the intersecting plane at what turns 

out to be a focus.  Similarly we place a large 

sphere in the bottom of the cone and shrink it 

until it just touches the intersecting plane at what 

turns out to be the other focus of the ellipse.  

These spheres are called the Dandelin spheres.   

As Sanderson in the 3blue1brown video 

showed, the Dandelin sphere idea can be 

extended to show that the oblique section of a 

circular cylinder also yields an ellipse.  (Just 

expand the point S in Figure 9 into a circle at the 

top that matches the circle at the bottom, thus 

making a cylinder with equal Dandelin spheres 

still touching the two foci.) 

“Stretched Circle” ⇒⇒⇒⇒ “Compressed Circle” 

Sanderson then said the ellipse in the cylinder was a stretched version of a circle.  I decided to 

show this explicitly, as well as how that stretched circle would be equivalent to a compressed circle.  

Figure 10 shows the ellipse obtained from slicing a plane through the cylinder of (red) radius b (equal 

to the semi-minor axis of the ellipse).  The semi-major axis a is also shown in red in the figure.  Now 

take any point P on the ellipse and drop a perpendicular line to the major axis (blue y), intersecting 

the axis at a (green) distance x from the center of the ellipse.  Slice a vertical plane through the line 

segment y intersecting the radius b of the base circle at a (green) distance z from the center of the 

 
Figure 9    Dandelin Spheres and Ellipse Conic 

Section (Wikipedia) 

 

 

Figure 10    Stretched Circle Ellipse Figure 11    Equivalent Compressed Circle Ellipse 
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circle and ellipse.  The line segment y is projected down onto the circle in a parallel line segment of 

the same length y.  By similar triangles we have a/b = x/z, which implies x = (a/b)z.  Since a > b in 

general, this shows x is a stretched version of z. 

Figure 11 shows the typical setup for defining the parametric equations for the ellipse (cf. Figure 

3 above).  This shows the stretched circle idea more clearly (using the circle of radius semi-minor 

axis b).  If h represents the vertical distance (ordinate) from x to the large circle of radius a, then again 

by similar triangles we have h/y = x/z.  When we combine that with the previous x/z = a/b, we get 

y = (b/a)x, which is the original compressed circle form for the ellipse (now using the circle of radius 

semi-major axis a). 

Historical Question 

Even though Euclid and Apollonius did not show the compressed circle characterization of the 

ellipse, what about the stretched circle property?  If they showed that, then it would be trivial to 

obtain the compressed circle characterization as I have shown.  What this amounts to is showing first 

that the section of a cylinder is an ellipse.   

From Heath this was apparently not well-known for some 600 years [Heath 1921].   He mentions  

that the mathematician, Serenus of Antinouplis (c. 300 – c. 360 AD),  

observes that many persons who were students of geometry were under the erroneous impression that 

the oblique section of a cylinder was different from the oblique section of a cone known as an ellipse, 

whereas it is of course the same curve. [Heath 1921, p.519] 

As Heath’s discussion is summarized in Wikipedia,
6
 “Serenus wrote a commentary on the Conics 

of Apollonius, which is now lost. … But he was also a prime mathematician in his own right, having 

written two works entitled On the Section of a Cylinder and On the Section of a Cone, works that 

came to be connected to Apollonius’ Conics. This connection helped them to survive through the 

ages.”  In his work on the cylinder, Serenus used Euclidean methods to show that the sections of a 

cylinder were indeed ellipses.  So by the 4
th
 century AD a simplified Euclidean-type plane geometry 

proof of the compressed circle property would be available. 

Even so, the Dandelin sphere proof is a lot simpler and more elegant than a Euclidean-type 

argument.  My only disappointment is that I still do not have a pure plane geometry proof using my 

rotated circle (taco shell) argument.   

� 
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